Histony

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj

Histonyzasadowe białka wchodzące w skład chromatyny, neutralizujące i wiążące kwas DNA.

MAją niewielkie masie cząsteczkowej (poniżej 23 kDa). Charakteryzują się dużą zawartością aminokwasów zasadowych, zwłaszcza lizyny i argininy, co nadaje im właściwości polikationów. Histony wiążą się z polianionową helisą DNA, tworząc elektrycznie obojętne nukleoproteiny.

Typy histonów[edytuj | edytuj kod]

Wyróżnia się pięć typów histonów:

  • szczególnie bogate w lizynę:
1) H1 - najbardziej zasadowy, największy z histonów (zwany czasem histonem łącznikowym)
2) H2A
3) H2B
  • szczególnie bogate w argininę:
4) H3
5) H4

Histony H3 i H4 są najbardziej konserwatywne ewolucyjnie, natomiast histon H1 jest najbardziej zmienny.

Histony H2A, H2B, H3 i H4 tworzą rdzeń nukleosomu, a histon H1 spina DNA wchodzące i schodzące z nukleosomu.

Histony są białkami niezwykle konserwatywnymi ewolucyjnie i występują u wszystkich organizmów eukariotycznych, a także u archeanów, jednakże H1 wykazuje spore różnice nie tylko gatunkowe, ale także tkankowe. Nie jest to spowodowane różnymi genami kodującymi histon H1, lecz modyfikacjami posttranslacyjnymi. Istnieje także bardzo wiele tkankowo-specyficznych wariantów histonów, zwłaszcza w przypadku histonu łącznikowego np:

  • CenH3 - odpowiedzialny za organizację centromerów i kinetochorów
  • H3.3 - zwiększa aktywność transkrypcji
  • H2A.X - ułatwia naprawę i rekombinację DNA

Budowa[edytuj | edytuj kod]

Rdzeń każdego histonu jako białka jest niepolarną domeną globulinową. Polarne są obydwa końce, które zawierają właśnie aminokwasy zasadowe odpowiadające za polarność cząsteczki. Motyw C-końcowy nazywany jest także zawinięciem histonowym (ang. histon fold), natomiast motyw N-końcowy (ogon histonu) jest często obiektem modyfikacji posttranslacyjnych, pośredniczy on także w tworzeniu heterodimerów histonów w nukleosomie. Histony archeonów nie posiadają charakterystycznego dla eukariotów motywu N-końcowego[potrzebne źródło].

Białka oddziałujące z histonami[edytuj | edytuj kod]

Podczas replikacji DNA konieczne jest także odtworzenie struktury chromatyny i przyłączenie do niej nowo zsyntezowanych histonów. Pośredniczą przy tym następujące białka:

  • CAF-1 - jest to kompleks białkowy występujący u Homo sapiens, łączący się z acetylowanymi histonami H3 i H4
  • NAP-1 - także występuje u człowieka i pełni podobną funkcję jak powyższe białko, jednak oddziałuje z histonami H2A i H2B
  • N1 i N2 oraz nukleoplazmina - są analogicznymi białkami ale występują u Xenopus

Modyfikacje[edytuj | edytuj kod]

Histony wchodzące w skład chromatyny podlegają modyfikacjom posttranslacyjnym, co powoduje rozluźnienie chromatyny. Jest to konieczne do przeprowadzenia replikacji DNA lub transkrypcji. Najczęstsze modyfikacje, którym podlegają histony w trakcie cyklu komórkowego, to:

Acetylacja zachodzi najczęściej na histonie H4 i dotyczy lizyny. Proces ten ma duże znaczenie w ekspresji genów, ponieważ acetylacja histonów powoduje częściową dekondensację chromatyny, przez co jest ona bardziej dostępna dla czynników transkrypcyjnych. Niski poziom acetylacji jest czynnikiem biorącym udział w inaktywacji chromosomu X oraz z superaktywnością tego chromosomu u samców Drosophila melanogaster. Wiele acetylotransferaz to aktywatory transkrypcji. Z kolei metylacja histonów jest zwykle skorelowana z wyciszaniem transkrypcji. Do niedawna uważano, że w odróżnieniu od acetylacji jest ona procesem nieodwracalnym, ale niedawno opisano enzymy o aktywności demetylaz histonów[1].

Fosforylacja histonów skorelowana jest zwykle z cyklem komórkowym, największy stopień tej modyfikacji jest obserwowany podczas późnej fazy G2 i mitozy. Podczas samej mitozy na jedną cząsteczkę histonu H1 przypada od 6 do 25 grup fosforanowych (w zależności od organizmu). Ponadto zakłada się, że dla przeprowadzenia tej fosforylacji konieczne jest częściowe wynurzenie. Różne warianty są fosforylowane w różny sposób i różne jest rozmieszczenie ufosforylowanych cząsteczek w chromatynie.

Proces ADP-rybozylacji polega na dodaniu do cząsteczek histonów łańcuchów złożonych z kilkunastu reszt cukrowych, połączonych kowalencyjnie z białkiem. Modyfikacja ta związana jest ze stabilizacją struktury wyższego rzędu, ale niektóre dane wskazują, że ADP-rybozylacja prowadzi raczej do relaksacji chromatyny. Ponadto jest ona prawdopodobnie związana z procesami naprawy DNA, a także apoptozą[potrzebne źródło].

Bibliografia[edytuj | edytuj kod]

  • Piotr Węgleński (red), Genetyka molekularna, wyd 2 poprawione PWN Warszawa 2006

Przypisy

  1. R. Holliday, T. Ho,. DNA methylation and epigenetic inheritance. „Methods”. 27, s. 179–183, 2002. doi:10.1016/S1046-2023(02)00072-5. PMID 12095278. 

Zobacz też[edytuj | edytuj kod]