Krater uderzeniowy

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj
Krater uderzeniowy na Księżycu

Krater uderzeniowy – koliste zagłębienie (lub zniekształcenie) na powierzchni ciała niebieskiego, spowodowane upadkiem meteorytu, planetoidy lub komety. Kratery są najczęściej spotykanymi elementami rzeźby powierzchni ciał o budowie skalistej i skalno-lodowej w Układzie Słonecznym, o ile ciało jest pozbawione atmosfery, a jego powierzchnia nie została przekształcona przez procesy geologiczne. Obserwowalna gęstość występowania kraterów uderzeniowych zawiera informację o wieku struktury geologicznej zawierającej te kratery i o intensywności procesów geologicznych. Na przykład, Io (księżyc Jowisza) jest niemal zupełnie pozbawiony kraterów meteorytowych.

Kratery uderzeniowe należy odróżnić od podobnych struktur innego pochodzenia, na przykład kraterów wulkanicznych lub kraterów powstałych w wyniku eksplozji (na przykład, zobacz Szagan (jezioro)). Na Ziemi, kratery uderzeniowe często wypełnione są wodą i wtedy nazywane bywają jeziorami kraterowymi.

Historia badań[edytuj | edytuj kod]

Krater Meteorytowy (Barringera) w stanie Arizona w USA

Pierwszy krater uderzeniowy został zidentyfikowany w Arizonie przez geologa Daniela Barringera w 1903 roku. Z początku jego idea pochodzenia tej struktury nie została przyjęta. Znaczenie tego odkrycia i implikacje mnogości kraterów uderzeniowych na Księżycu i innych ciałach zaczęły być rozumiane dopiero w latach 60. XX wieku; astronauci z programu Apollo ćwiczyli w Arizonie poruszanie się w księżycowym terenie. Krater Barringera jest obecnie najlepiej znanym i jednym z najlepiej zachowanych kraterów uderzeniowych na Ziemi[1].

Tworzenie krateru[edytuj | edytuj kod]

Laboratoryjna symulacja uderzenia i tworzenia krateru
Typowe struktury kraterów uderzeniowych

Tworzenie krateru związane jest z uderzeniem meteorytu lecącego ze znaczną prędkością. Zaniedbując wpływ atmosfery ziemskiej, można ocenić że minimalna prędkość meteorytu uderzającego Ziemię wynosi ok. 11 km/s (druga prędkość kosmiczna), zaś maksymalna to ok. 70 km/s (suma trzeciej prędkości kosmicznej w rejonie orbity ziemskiej i szybkości orbitalnej Ziemi dookoła Słońca). Mediana szybkości meteorytów uderzających Ziemię oceniana jest na 20 - 25 km/s.

Tworzenie krateru może być podzielone na następujące fazy:

  • początkowy kontakt i kompresja,
  • ekskawacja,
  • modyfikacja i zapadanie.

Początkowy kontakt gwałtownie wyhamowuje czołową część meteorytu podczas gdy jego część tylna nadal posuwa się. Powstaje fala uderzeniowa powodująca kompresję materiału. W przypadku dużych uderzeń, ciśnienia przekraczają 1 TPa. Naprężenia przekraczają wytrzymałość materiału. Temperatura podnosi się i powoduje topienie oraz odparowywanie materiałów. Kontakt, kompresja, dekompresja oraz przejście fali uderzeniowej przez rejon krateru zajmuje kilka dziesiątych sekundy w przypadku dużego zderzenia. Następująca ekskawacja materiału jest wolniejsza. Początkowo cząstki materiału przyspieszane są w dół i na zewnątrz, ale ruch ten zmienia kierunek w górę i na zewnątrz. Początkowo wgłębienie ma kształt w przybliżeniu półkulisty, który następnie staje się paraboloidalny. Maksymalne wgłębienie osiąga około 1/4 do 1/3 średnicy krateru. Około 1/3 objętości krateru powstaje w wyniku wyrzutu materiału (przykładowo planetoida o średnicy 1500 metrów, która uderzyła w Europę 15 milionów lat temu tworząc krater Nördlinger Ries, wyrzuciła ponad bilion ton skał[2]), natomiast pozostała objętość powstaje w wyniku przesunięcia materiału w dół, w bok oraz, na obrzeżach, do góry, a także kompakcji materiałów porowatych. Powstający krater ma obrzeże topograficznie wypiętrzone.

Mniejsze kratery mają prostą strukturę i kształt misy. W przypadku kraterów powyżej pewnej granicznej wielkości (około 4 km w przypadku Ziemi), grawitacja natychmiast modyfikuje nowo powstały krater, czego rezultatem jest krater złożony, z charakterystycznym wypiętrzeniem w centrum. Kratery bardzo duże mają jeszcze bardziej złożoną strukturę, z wielokrotnymi pierścieniami otaczającymi koncentrycznie centralne wypiętrzenie.

Kratery w Układzie Słonecznym[edytuj | edytuj kod]

Wielopierścieniowy krater uderzeniowy Valhalla na Kallisto, księżycu Jowisza, zdeformowany przez procesy geologiczne

Dwie planety typu ziemskiegoZiemia i Wenus oraz księżyc Saturna, Tytan posiadają gęste atmosfery i są chronione przed uderzeniami mniejszych ciał, które ulegają spaleniu w atmosferze w postaci meteorów lub wyhamowują w niej, nie tworząc krateru. Kratery uderzeniowe nie występują oczywiście na gazowych olbrzymach, nie posiadających stałej powierzchni, chociaż upadki małych ciał niebieskich na te planety nie należą do rzadkości.

Na Księżycu i innych ciałach niebieskich bez procesów tektonicznych i atmosfery, raz utworzone kratery mogą istnieć bez większych zmian przez miliardy lat, ewentualnie będąc niszczone przez powstanie nowszych kraterów. Dlatego Księżyc, księżyce planet-olbrzymów oraz planety Merkury i Mars są pokryte nieporównanie większa liczbą kraterów niż Ziemia. Do ważnych wyjątków należy Io, księżyc Jowisza, na którym kratery uderzeniowe zniszczył intensywny wulkanizm; ponadto, na niektórych dużych księżycach lodowych miały miejsce w przeszłości procesy geologiczne, które mogły zdeformować rzeźbę kraterów. W niektórych przypadkach relief został całkowicie zatarty, pozostawiając jedynie jasny, kolisty ślad, tzw. palimpsest.

Na Ziemi procesy tektoniczne i erozja nieustannie odnawiają powierzchnię planety i stopniowo usuwają ślady kraterów, więc jest ich stosunkowo niedużo (zidentyfikowano 183[3]). Nie ma już żadnych śladów niezliczonych kraterów, które musiały pokrywać powierzchnię Ziemi przez pierwsze kilkaset milionów lat jej istnienia, w czasie tzw. Wielkiego Bombardowania przez ciała pozostałe z procesu formowania planet Układu Słonecznego. Dodatkowo ciała spadające na Ziemię przeważnie trafiają w oceany, gdyż pokrywają one 71% powierzchni planety. Procesy tektoniczne usunęły także zdecydowaną większość kraterów z powierzchni Wenus.

Największe baseny uderzeniowe[edytuj | edytuj kod]

Rozmiary największych struktur pochodzenia impaktowego są czasem trudne do dokładnego określenia, ze względu na ich zaawansowany wiek (są one często zniszczone przez młodsze uderzenia) i obecność wielu pierścieni otaczających krater. Największe potwierdzone kratery uderzeniowe w Układzie Słonecznym to:

Nazwa Mapa lub zdjęcie Średnica [km] Ciało niebieskie
Basen Biegun Południowy - Aitken Aitken Kagu big.jpg 2500 Księżyc
Hellas Planitia Hellas Planitia by the Viking orbiters.jpg 2100 Mars
Argyre Planitia Argyre region on Mars by the Viking 1 orbiter.jpg 1800 Mars
Caloris Basin MESSENGER first photo of unseen side of mercury cropped to Caloris.jpg 1550 Merkury
Isidis Planitia Isidis basin topo.jpg 1500 Mars
Mare Imbrium Mimbrium.jpg 1120 Księżyc
Topografia północnych nizin Marsa; nazwy jednostek na mapie są nieformalne

Inne struktury uderzeniowe o podobnych rozmiarach mogły nie zostać do tej pory zaobserwowane (ze względu na niedostateczną rozdzielczość zdjęć niektórych ciał, zwłaszcza dużych obiektów transneptunowych) lub zidentyfikowane. Na północnej półkuli Marsa znajduje się rozległy obszar nizinny Vastitas Borealis, który jest podejrzewany o pochodzenie impaktowe[4] już od lat 80. XX wieku[5]. Mapa topograficzna północnej półkuli planety z 2005 roku ukazuje obniżenia terenu, w których można rozpoznać misy trzech wielkich basenów uderzeniowych: najmniejszego Isidis (potwierdzony, na liście powyżej), oraz niepotwierdzonych basenów Utopia i Borealis[6], większych nawet od Basenu Biegun Południowy - Aitken.

Kratery uderzeniowe na Ziemi[edytuj | edytuj kod]

Typ struktury skalnej zwany stożkiem zderzeniowym (ang. shatter cone), jeden z potencjalnych indykatorów impaktu; szerokość ok. 13 cm, Krater Steinheim, Niemcy.

Kratery na Ziemi są często trudno dostrzegalne, gdyż zjawiska geologiczne, atmosferyczne i roślinność niszczą je lub kamuflują. Ponadto w ok. 70% przypadków ciało niebieskie spadające na Ziemię uderza w ocean, gdzie nawet duży obiekt może nie pozostawić krateru – takim zdarzeniem był np. upadek planetoidy Eltanin w plejstocenie[7]. Do tej pory odkryto 184 kratery uderzeniowe na Ziemi[3]. Najstarsze z nich to Suavjärvi w Karelii (w Rosji) sprzed ok. 2,4 miliarda lat, oraz Vredefort w Republice Południowej Afryki liczący sobie 2 miliardy lat[8]. Krater Vredefort, mający wielopierścieniową strukturę o średnicy 300 kilometrów (właściwy krater ma 160 km średnicy), jest także największym potwierdzonym kraterem na Ziemi.

Największe (potwierdzone) kratery uderzeniowe na Ziemi to[9]:

  1. Vredefort, Republika Południowej Afryki
  2. Chicxulub, Meksyk, Ameryka Środkowa – związany z wymieraniem kredowym
  3. Krater Sudbury koło miasta Sudbury, Ontario, Kanada
  4. Popigaj, Kraj Krasnojarski, Rosja
  5. Acraman, Australia Południowa
  6. Manicouagan, Quebec, Kanada
  7. Morokweng, Republika Południowej Afryki
  8. Kara, Nieniecki Okręg Autonomiczny, Rosja
  9. Beaverhead, Montana, USA
  10. Tookoonooka, Queensland, Australia

Wszystkie te kratery mają średnicę nie mniejszą niż 55 km. Istnieją przypuszczenia, że jeszcze kilka dużych struktur na Ziemi, które pierwotnie miały kolisty lub eliptyczny kształt, jest dawnymi kraterami uderzeniowymi. Największa taka struktura leży pod lądolodem Antarktydy, jest to hipotetyczny krater na Ziemi Wilkesa. Mierzy on ponad 500 km średnicy, a jego wiek ocenia się na 250 milionów lat. Planetoida, która mogła wybić ten krater musiałaby mieć 40 km średnicy; impakt ten, jeżeli rzeczywiście miał miejsce, był jedną z głównych przyczyn masowego wymierania z przełomu permu i triasu i mógł przyczynić się do osłabienia i rozpadu superkontynentu Gondwany[10]. Innym przypuszczalnym kraterem o podobnej średnicy jest krater Śiwa u zachodnich wybrzeży Indii, związany wiekiem z wymieraniem kredowym[11].

Inne znane kratery:

W Polsce:

Przypisy

  1. Meteor Crater (ang.). Go-Arizona Travel Sites. [dostęp 2012-11-26].
  2. Prawdopodobieństwo uderzenia meteorytu w Ziemię
  3. 3,0 3,1 Earth Impact Database. University of New Brunswick. [dostęp 2014-03-24].
  4. Wielka katastrofa na Marsie. „Dziennik”, 2008-06-26 (pol.). [dostęp 2012-11-08]. 
  5. T. Zbigniew Dworak, Konrad Rudnicki: Świat planet. Wyd. 3. Warszawa: Państwowe Wydawnictwo Naukowe, 1988, s. 106, seria: Biblioteka problemów. ISBN 83-01-08236-4.
  6. Kenneth L. Tanaka, James A. Skinner, Jr., Trent M. Hare: Geologic Map of the Northern Plains of Mars (ang.). W: Scientific Investigations Map 2888 [on-line]. U.S. Geological Survey, 2005. [dostęp 2012-11-06].
  7. Gersonde, R., Kyte, F.T., Bleil, U., Diekmann, B. i inni. Geological record and reconstruction of the late Pliocene impact of the Eltanin asteroid in the Southern Ocean. „Nature”. 390 (6658), s. 357-363, 1997. doi:10.1038/37044. 
  8. Impact Structures Sorted by Age. Earth Impact Database. [dostęp 2014-03-24].
  9. Impact Structures Sorted by Diameter. Earth Impact Database. [dostęp 2014-03-24].
  10. C. Kazan, R. Sato: Antarctica: Site of the Biggest Impact Crater on Earth Revealed (ang.). W: The Daily Galaxy [on-line]. 2010-08-17. [dostęp 2012-11-26].
  11. Sankar Chatterjee, Naresh M. Mehrotra. The significance of the contemporaneous Shiva impact structure and Deccan volcanism at the KT boundary. „Geological Society of America. Abstracts with Programs”. 41 (7), s. 160, 2009 (ang.). 

Zobacz też[edytuj | edytuj kod]

Zobacz hasło krater w Wikisłowniku
Wikimedia Commons

Linki zewnętrzne[edytuj | edytuj kod]