Lemat o uściskach dłoni

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacji, wyszukiwania
Niniejszy artykuł jest częścią cyklu teoria grafów.




Najważniejsze pojęcia
graf
drzewo
podgraf
cykl
klika
stopień wierzchołka
stopień grafu
dopełnienie grafu
obwód grafu
pokrycie wierzchołkowe
liczba chromatyczna
indeks chromatyczny
izomorfizm grafów
homeomorfizm grafów


Wybrane klasy grafów
graf pełny
graf spójny
drzewo
graf dwudzielny
graf regularny
graf eulerowski
graf hamiltonowski
graf planarny


Algorytmy grafowe
A*
Bellmana-Forda
Dijkstry
Fleury'ego
Floyda-Warshalla
Johnsona
Kruskala
Prima
przeszukiwanie grafu
wszerz
w głąb
najbliższego sąsiada


Zagadnienia przedstawiane jako problemy grafowe
problem komiwojażera
problem chińskiego listonosza
problem marszrutyzacji
problem kojarzenia małżeństw


Inne zagadnienia
kod Graya
diagram Hassego
kod Prüfera


Dany jest graf prosty G o n wierzchołkach (v_1, v_2, \dots, v_n) i m krawędziach. Na mocy lematu o uściskach dłoni spełniona jest następująca własność:

\sum_{i=1}^{n}\deg(v_i) = 2m.


Powyższą własność nietrudno jest zrozumieć intuicyjnie: każda krawędź łączy dwa wierzchołki, a zatem dodając do siebie stopnie sąsiadujących wierzchołków (czyli liczby krawędzi wychodzących z nich), liczymy każdą z krawędzi dwukrotnie, co potwierdza prawdziwość powyższej własności. Wynika z tego również fakt, że w dowolnym grafie liczba wierzchołków o nieparzystych stopniach jest parzysta.

Jako pierwszy zauważył tę własność Leonhard Euler w 1736 roku. [1]


Przypisy

  1. Robin J Wilson: Wprowadzenie do teorii grafów. Warszawa: Wydaw. Naukowe PWN, 1998.