Liczba taksówkowa

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj

Liczba taksówkowa[1] – w matematyce, enta liczba taksówki, zwykle oznaczana Ta(n) albo Taxicab(n), jest zdefiniowana jako najmniejsza liczba, która może być wyrażona jako suma dwóch sześcianów na n różnych sposobów. G. H. Hardy i E. M. Wright udowodnili w 1954, że takie liczby istnieją dla wszystkich dodatnich liczb całkowitych n. Jednakże dowód nie pomaga w wyznaczaniu kolejnych liczb Ta(n). Do tej pory znanych jest dwanaście kolejnych liczb taksówkowych.

\operatorname{Ta}(1) = 2 = 1^3 + 1^3
\begin{matrix}\operatorname{Ta}(2)&=&1729&=&1^3 + 12^3 \\&&&=&9^3 + 10^3\end{matrix}
\begin{matrix}\operatorname{Ta}(3)&=&87539319&=&167^3 + 436^3 \\&&&=&228^3 + 423^3 \\&&&=&255^3 + 414^3\end{matrix}
\begin{matrix}\operatorname{Ta}(4)&=&6963472309248&=&2421^3 + 19083^3 \\&&&=&5436^3 + 18948^3 \\&&&=&10200^3 + 18072^3 \\&&&=&13322^3 + 16630^3\end{matrix}
\begin{matrix}\operatorname{Ta}(5)&=&48988659276962496&=&38787^3 + 365757^3 \\&&&=&107839^3 + 362753^3 \\&&&=&205292^3 + 342952^3 \\&&&=&221424^3 + 336588^3 \\&&&=&231518^3 + 331954^3\end{matrix}
\begin{matrix}\operatorname{Ta}(6)&=&24153319581254312065344&=&582162^3 + 28906206^3 \\&&&=&3064173^3 + 28894803^3 \\&&&=&8519281^3 + 28657487^3 \\&&&=&16218068^3 + 27093208^3 \\&&&=&17492496^3 + 26590452^3 \\&&&=&18289922^3 + 26224366^3\end{matrix}
\begin{matrix}\operatorname{Ta}(7)&=&24885189317885898975235988544&=&2648660966^3 + 1847282122^3 \\&&&=&2685635652^3 + 1766742096^3 \\&&&=&2736414008^3 + 1638024868^3 \\&&&=&2894406187^3 + 860447381^3 \\&&&=&2915734948^3 + 459531128^3 \\&&&=&2918375103^3 + 309481473^3\\&&&=&2919526806^3 + 58798362^3\end{matrix}
\begin{matrix}\operatorname{Ta}(8)&=&50974398750539071400590819921724352&=&299512063576^3 + 288873662876^3 \\&&&=&336379942682^3 + 234604829494^3 \\&&&=&341075727804^3 + 224376246192^3 \\&&&=&347524579016^3 + 208029158236^3 \\&&&=&367589585749^3 + 109276817387^3 \\&&&=&370298338396^3 + 58360453256^3\\&&&=&370633638081^3 + 39304147071^3\\&&&=&370779904362^3 + 7467391974^3\end{matrix}
\begin{matrix}\operatorname{Ta}(9)&=&136897813798023990395783317207361432493888&=&41632176837064^3 + 40153439139764^3 \\&&&=&46756812032798^3 + 32610071299666^3 \\&&&=&47409526164756^3 + 31188298220688^3 \\&&&=&48305916483224^3 + 28916052994804^3 \\&&&=&51094952419111^3 + 15189477616793^3 \\&&&=&51471469037044^3 + 8112103002584^3\\&&&=&51518075693259^3 + 5463276442869^3\\&&&=&51530042142656^3 + 4076877805588^3\\&&&=&51538406706318^3 + 1037967484386^3\end{matrix}
\begin{matrix}\operatorname{Ta}(10)&=&7335345315241855602572782233444632535674275447104&=&15695330667573128^3 + 15137846555691028^3 \\&&&=&17627318136364846^3 + 12293996879974082^3 \\&&&=&17873391364113012^3 + 11757988429199376^3 \\&&&=&18211330514175448^3 + 10901351979041108^3 \\&&&=&19262797062004847^3 + 5726433061530961^3 \\&&&=&19404743826965588^3 + 3058262831974168^3\\&&&=&19422314536358643^3 + 2059655218961613^3\\&&&=&19426825887781312^3 + 1536982932706676^3\\&&&=&19429379778270560^3 + 904069333568884^3\\&&&=&19429979328281886^3 + 391313741613522^3\end{matrix}
\begin{matrix}\operatorname{Ta}(11)&=&2818537360434849382734382145310807703728251895897826621632&=&11410505395325664056^3 + 11005214445987377356^3 \\&&&=&12815060285137243042^3 + 8937735731741157614^3 \\&&&=&12993955521710159724^3 + 8548057588027946352^3 \\&&&=&13239637283805550696^3 + 7925282888762885516^3 \\&&&=&13600192974314732786^3 + 6716379921779399326^3 \\&&&=&14004053464077523769^3 + 4163116835733008647^3\\&&&=&14107248762203982476^3 + 2223357078845220136^3\\&&&=&14120022667932733461^3 + 1497369344185092651^3\\&&&=&14123302420417013824^3 + 1117386592077753452^3\\&&&=&14125159098802697120^3 + 657258405504578668^3\\&&&=&14125594971660931122^3 + 284485090153030494^3\end{matrix}
\begin{matrix}\operatorname{Ta}(12)&=&73914858746493893996583617733225161086864012865017882136931801625152&=&33900611529512547910376^3 + 32696492119028498124676^3 \\&&&=&38073544107142749077782^3 + 26554012859002979271194^3\\&&&=&38605041855000884540004^3 + 25396279094031028611792^3 \\&&&=&39334962370186291117816^3 + 23546015462514532868036^3 \\&&&=&40406173326689071107206^3 + 19954364747606595397546^3 \\&&&=&41606042841774323117699^3 + 12368620118962768690237^3 \\&&&=&41912636072508031936196^3 + 6605593881249149024056^3 \\&&&=&41950587346428151112631^3 + 4448684321573910266121^3 \\&&&=&41960331491058948071104^3 + 3319755565063005505892^3 \\&&&=&41965847682542813143520^3 + 1952714722754103222628^3 \\&&&=&41965889731136229476526^3 + 1933097542618122241026^3 \\&&&=&41967142660804626363462^3 + 845205202844653597674^3\end{matrix}

Przypisy

  1. Polska nazwa wystąpiła w MMM nr 3 (24) lipiec 2008.