Pamięć holograficzna

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacji, wyszukiwania

Uzyskanie znacząco większej pojemności nośników niż obecnie popularne, wymaga zastosowania zupełnie innej techniki – np. holografii. Pomysł ten zrodził się już w roku 1963, gdy jeden z pracowników firmy PolaroidPieter J. van Heerden zaproponował trójwymiarowy zapis danych.

Zasada działania[edytuj | edytuj kod]

Zapis danych: 2 - pryzmat
Odczyt danych

Najistotniejszymi elementami układu zapisująco/odczytującego są dwie wiązki laserowe padające na nośnik pamięciowy, jakim jest kryształ niobianu litu (domieszkowany atomami żelaza). Jedna z nich – węższa – to tzw. wiązka sygnałowa. Zawiera ona dane, jakie mają być zachowane w krysztale. Wiązka druga – zwana referencyjną odpowiada za miejsce w krysztale, w którym dane przesyłane wiązką sygnałową mają być zachowane.

W tego typu pamięciach nie istnieje pojęcie ścieżki danych. Pamięci holograficzne operują całymi stronami danych. Można sobie wyobrazić, że taki kryształek pokroimy na plasterki o grubości rzędu 100 mikrometrów każdy. Taki plasterek to właśnie strona danych przesyłanych przez wiązkę sygnałową. Zapis stronicowy daje dużo szybszy czas dostępu do danych, które są odczytywane analogicznie do zapisu (całymi stronami) dzięki odpowiedniemu pozycjonowaniu wiązki referencyjnej.

Nośniki holograficzne[edytuj | edytuj kod]

Najpowszechniej stosowanym w laboratoriach nośnikiem danych był wspomniany już kryształ niobianu litu. Nie jest to jednak jedyna możliwa substancja pozwalająca na holograficzny zapis i odczyt danych. W 1994 firma DuPont wypuściła na rynek fotopolimer o obiecujących możliwościach. Najważniejszą innowacją jaką wnosił nowy materiał był fakt, że ów fotopolimer pod wpływem światła nie ulegał zmianom fotorefrakcyjnym (co ma miejsce w przypadku wzmiankowanego już kryształu) lecz przemianie chemicznej. Różnica polega na tym, że w przypadku fotorefrakcji, w krysztale dane są zapisywane poprzez odpowiednie rozdzielenie ładunków elektrycznych w strukturze kryształu, daje to możliwość ich późniejszej neutralizacji (co oznacza skasowanie zapisu). Natomiast naświetlanie (zapis danych) fotopolimeru wywoływało nieodwracalną reakcję fotochemiczną, co oznacza, że materiał ten nadaje się wyłącznie do tworzenia pamięci stałych (ROM).

Prace laboratoryjne[edytuj | edytuj kod]

Warto zapoznać się też z niektórymi wynikami osiągniętymi przez naukowców w dziedzinie pamięci holograficznych. Np. w 1995 roku niejaki Pu z California Institute of Technology uzyskał gęstość zapisu 10 bitów na 1 mikrometr² dla dysku o powierzchni zwykłego krążka CD, lecz o grubości zaledwie 100 mikrometrów. Jeżeli zwiększy się grubość materiału holograficznego np. do ok. 1 mm, to gęstość zapisu powinna osiągnąć wartość 100 bitów/mikrometr kwadratowy. Taki dysk holograficzny byłby identyczny rozmiarami z dzisiejszymi płytami CD, lecz oferowałby pojemność rzędu 65 GB.

Kolejnym osiągnięciem są rezultaty prac naukowców wydziału fizyki University of Oregon. Udało im się zaobserwować w krysztale o nazwie Tm³+:YAG następujące wyniki: podczas zapisywania 1760-bitowej sekwencji z szybkością 20 Mbit/s osiągnięto gęstość około 8 Gbit/cal kwadratowy zaś transfer danych z zapisanego już nośnika określono na poziomie 1 Gbit/s. Tak olbrzymie wartości osiągnięto jednak w dalekich od domowych warunkach (niskie temperatury, specjalne soczewki itp.)

Zastosowania[edytuj | edytuj kod]

Firma Holoplex skonstruowała szybki układ pamięciowy przechowujący wzory linii papilarnych, stosowany we wszelkiego rodzaju systemach wymagających selektywnego dostępu. Co prawda pojemność tego układu jest mniejsza o połowę od zwykłej płyty CD, lecz całą pamięć można odczytać w ciągu jednej sekundy. Warto też wiedzieć, że użycie układów holograficznych pozwoli na szersze wykorzystanie kojarzeniowej natury zapisu holograficznego.

Zobacz też[edytuj | edytuj kod]