Promieniowanie synchrotronowe

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacji, wyszukiwania

Promieniowanie synchrotronowepromieniowanie elektromagnetyczne o charakterze nietermicznym, podobne do promieniowania cyklotronowego, lecz generowane przez naładowane cząstki (głównie elektrony) poruszające się z prędkością bliską prędkości światła w polu magnetycznym, w wyniku czego są przyspieszane po krzywoliniowych torach. Można je uzyskać sztucznie w pierścieniach akumulacyjnych synchrotronów lub naturalnie w wyniku szybkiego ruchu elektronów przez pola magnetyczne w przestrzeni kosmicznej. Promieniowanie synchrotronowe zawiera typowo pasma podczerwone, widzialne, ultrafioletu oraz X.

Promieniowanie synchrotronowe z pierścieni akumulacyjnych[edytuj | edytuj kod]

Promieniowanie synchrotronowe charakteryzuje się:

  • wysoką jasnością i intensywnością, wiele rzędów wielkości większą niż w przypadku konwencjonalnych lamp rentgenowskich,
  • wysoką światłością, przekraczającą wszelkie inne sztuczne czy też naturalne źródła o wiele rzędów wielkości: typowe źródła trzeciej generacji mają światłość większą niż:
\frac{10^{18}\operatorname{foton}}{\operatorname{s}\cdot \operatorname{mm}^{2}\cdot \operatorname{mrad}^{2}\cdot 0,1%\operatorname{BW}}
gdzie 0,1%\mathrm{BW} odpowiada szerokości pasma 10^{-3\omega} o częstotliwości ω,
  • wysoką kolimacją, to znaczy małym kątem dywergencji (rozbieżności) wiązki,
  • niską emitancją, czyli niewielkim przekrojem źródła światła i małym kątem przestrzennym,
  • wytwarzaniem fotonów o szerokim zakresie energii, od kilku do kliku tysięcy elektronowoltów,
  • wysokim stopniem polaryzacji (liniowej lub eliptycznej),
  • emisją w bardzo niewielkich przedziałach czasu (rzędu nanosekundy lub poniżej, czyli miliardowe części sekundy).

Elektrony są przyspieszane na kilku etapach, aby móc osiągnąć końcową energię rzędu gigaelektronowoltów (GeV). Elektrony znajdują się wewnątrz pierścienia z próżnią i poruszają się po zamkniętym obwodzie, przez to okrążając pierścień ogromną liczbę razy. Tor ruchu elektronów po obwodzie jest wymuszony przez potężne pola elektromagnetyczne. Elektromagnetyzm służy skupianiu wiązki ładunków, których jednoimienność powoduje wzajemne odpychanie (zgodnie z prawem Coulomba). Zmiana kierunku jest formą przyspieszenia i stąd elektrony emitują promieniowanie o energii rzędu gigaelektronowoltów. Występuje tu podobieństwo do radionadajników, lecz z tą różnicą, że takie przyspieszenie zmienia obserwowaną częstotliwość o czynnik γ, zgodnie z efektem Dopplera. Kolejnym znaczącym efektem relatywistycznym jest to, że wzór promieniowania także odbiega od izotropowego wzoru dipola oczekiwanego z nierelatywistycznej teorii, dając skrajnie skierowany do przodu stożek promieniowania. To sprawia, że promieniowanie synchrotronowe jest jednym z najjaśniejszych źródeł promieniowania X. Przyspieszenie w geometrii płaskiej powoduje, że promieniowanie jest spolaryzowane liniowo, gdy obserwowane w płaszczyźnie orbitalnej oraz spolaryzowane kołowo, gdy obserwowane przy niewielkim kącie do tej płaszczyzny.

Wzrastająca społeczność naukowa zaczęła sobie zdawać sprawę z zalet używania promieniowania synchrotronowego w badaniach spektroskopowych i dyfrakcyjnych począwszy od lat 1960. i 1970. Na początku pierścienie akumulacyjne były budowane dla celów fizyki cząstek, a promieniowanie synchrotronowe było uzyskiwane przy okazji, gdy uginane promieniowanie elektromagnetyczne musiało być wydobyte przez dodatkowo wywiercone dziury.

Z czasem, gdy zastosowanie promieniowania synchrotronowego stawało się coraz częstsze i bardziej obiecujące, zaczęto wbudowywać w istniejące pierścienie urządzenia, które poprawiały natężenie promieniowania synchrotronowego. Synchrotrony trzeciej generacji zostały od początku przemyślane i zoptymalizowane dla uzyskania promieniowania X o wysokiej jasności.

Obecnie działają już źródła czwartej generacji promieniowania synchrotronowego - lasery rentgenowskie. Najsilniejszy z nich, laser FLASH w DESY (Hamburg) wytwarza impulsy monochromatycznego promieniowania w zakresie XUV-SX (skrajnego ultrafioletu próżniowego do miękkiego promieniowania rentgenowskiego) o mocy szczytowej w impulsie dochodzącej do 1 GW. Szczytowe natężenie w impulsie osiągać może wartości ponad 9 rzędów wielkości większe niż otrzymywane z najpotężniejszych synchrotronów III generacji.

Jak wspomniano powyżej, uginające wiązkę elektromagnesy są często stosowane do generowania promieniowania, jednak aby wygenerować silniejsze promieniowanie, czasem stosowane są inne urządzenia zwane "urządzenie wstawkowe". Dzisiejsze źródła trzeciej generacji bazują głównie na tych urządzeniach wstawkowych, gdzie proste odcinki w magnesie zakrzywiającym są używane do wprowadzenia periodycznej struktury magnetycznej (złożone z szeregu magnesów o odpowiednio ułożonych biegunach N i S), która kierunkuje elektrony sinusoidalnie lub spiralnie. W ten sposób, zamiast pojedynczego ugięcia, wiele dziesiątek lub setek "wigglów" w precyzyjnie określonych miejscach zwielokrotnia całkowitą intensywność wiązki. Główna różnica pomiędzy "wigglami" a "undulatorami" polega na intensywności ich pola magnetycznego i amplitudzie elektronu.

W pierścieniach akumulacyjnych znajdują się otwory umożliwiające wyjście promieniowaniu do komór próżniowych dostępnych badaczom. Duża liczba takich strumieni promieniowania może powstać we współczesnych synchrotronach trzeciej generacji.

Promieniowanie synchrotronowe w astronomii[edytuj | edytuj kod]

Energetyczny dżet z M87. Świecenie jest spowodowane przez promieniowanie synchrotronowe, wysokoenergetyczne elektrony poruszające się po spiralnych torach, wzdłuż pól magnetycznych, po raz pierwszy wykryte w 1956 roku przez Geoffreya R. Burbridge'a w M87 potwierdzając przewidywania Hannesa Alfvéna i Nicolaia Herlofsona z 1950 roku oraz Iosifa Samuilovicha Shklovskyego z 1953.

Promieniowanie synchrotronowe jest generowane także przez struktury astronomiczne i ruch w przestrzeni kosmicznej, typowo gdy elektrony poruszają się po torach spiralnych w polach magnetycznych (stąd zmieniają wektor prędkości). Zostało ono odkryte w 1956 roku przez Geoffreya R. Burbridge'a w dżecie wyemitowanym przez M87, który spostrzegł to jako potwierdzenie przewidywań Iosifa Szkłowskiego z 1953 roku (było to jeszcze wcześniej przewidziane przez Hannesa Alfvéna i Nicolaia Herlofsona w 1950 roku).

Zasugerowano, że odpowiedzialnymi za produkcję promieniowania synchrotronowego są supermasywne czarne dziury, które grawitacyjnie rozpędzają zjonizowane cząstki w polach magnetycznych.

Fizyk plazmy Hannes Alfvén zasugerował, że jony poruszające się wzdłuż biegu Birkeland i formują podwójną warstwę, która może być przyspieszana do prędkości relatywistycznych, które w niejednorodnym polu magnetycznym przyspieszają jony do prędkości relatywistycznych, wytwarzając tym samym promieniowanie synchrotronowe[1][2] X i gamma. ten mechanizm jest podobny do metody otrzymywania promieniowania X w laboratoriach.

Przypisy

Linki zewnętrzne[edytuj | edytuj kod]