Teoria prawdopodobieństwa

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacji, wyszukiwania

Teoria prawdopodobieństwa (także rachunek prawdopodobieństwa lub probabilistyka) – dział matematyki zajmujący się zdarzeniami losowymi. Rachunek prawdopodobieństwa zajmuje się badaniem abstrakcyjnych pojęć matematycznych stworzonych do opisu zjawisk, które nie są deterministyczne: zmiennych losowych w przypadku pojedynczych zdarzeń oraz procesów stochastycznych w przypadku zdarzeń powtarzających się (w czasie). Jako matematyczny fundament statystyki, teoria prawdopodobieństwa odgrywa istotną rolę w sytuacjach, w których konieczna jest analiza dużych zbiorów danych. Jednym z największych osiągnięć fizyki dwudziestego wieku było odkrycie probabilistycznej natury zjawisk fizycznych w skali mikroskopijnej, co zaowocowało powstaniem mechaniki kwantowej.

Matematyczna teoria prawdopodobieństwa sięga swoimi korzeniami do analizy gier losowych podjętej w siedemnastym wieku przez Pierre de Fermata oraz Blaise Pascala[1]. Z tego powodu, początkowo teoria prawdopodobieństwa zajmowała się niemal wyłącznie zjawiskami dyskretnymi i używała metod kombinatorycznych. Zmienne ciągłe zostały wprowadzone do teorii prawdopodobieństwa znacznie później. Za początek stworzenia współczesnej teorii prawdopodobieństwa powszechnie uważa się jej aksjomatyzację, której w 1933 dokonał Andriej Kołmogorow. Współczesna teoria prawdopodobieństwa jest ściśle związana z teorią miary.

Pomimo że wynik pojedynczego rzutu monetą lub kością do gry często z praktycznego punktu widzenia można uważać za nieprzewidywalny, jeżeli eksperyment taki powtórzony zostaje wielokrotnie, mogą pojawić się pewne prawidłowości i wzory statystyczne, które można badać i przewidzieć. Dwa przykłady takich prawidłowości, i kluczowe osiągnięcia rachunku prawdopodobieństwa, to prawo wielkich liczb oraz centralne twierdzenie graniczne.

Definicja prawdopodobieństwa[edytuj | edytuj kod]

Prawdopodobieństwem nazywamy dowolną funkcję \, P o wartościach rzeczywistych, określoną na σ-ciele zdarzeń \mathcal{F} \subset 2^{\Omega}, spełniającą warunki:

(A1) \, P(A) \ge 0 dla każdego \, A \in \mathcal{F};
(A2) \, P(\Omega) = 1;
(A3) Jeśli \, A_n \in \mathcal{F},\; n\in\mathbb{N} oraz  A_i \cap A_j = \emptyset dla \, i \neq j, to
\, P\left(\bigcup_{i=1}^{\infty}{A_i} \right) = \sum_{i=1}^{\infty}{P(A_i)}

Warunki (A1-A3) zostały sformułowane przez Kołmogorowa w roku 1933 jako aksjomaty teorii prawdopodobieństwa.

Matematyczny model doświadczenia losowego to trójka

\, (\Omega,\mathcal{F},P)

gdzie \, P jest prawdopodobieństwem, określonym na pewnym σ-ciele \, \mathcal{F} podzbiorów zbioru zdarzeń elementarnych \, \Omega. Trójkę tę nazywamy przestrzenią probabilistyczną.

Niektóre pojęcia z teorii prawdopodobieństwa[edytuj | edytuj kod]

Zobacz też[edytuj | edytuj kod]

Przypisy

Linki zewnętrzne[edytuj | edytuj kod]