Ładunek termojądrowy

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacji, wyszukiwania
Eksplozja bomby Ivy Mike, test bomby wodorowej, 1 listopada 1952, na atolu Eniwetok
Amerykańska bomba wodorowa B53 o równoważniku trotylowym 9 MT

Ładunek termojądrowy − (także: wodorowy) ładunek wybuchowy w którym głównym źródłem energii wybuchu jest niekontrolowana i samopodtrzymująca się reakcja łańcuchowa podczas której izotopy wodoru (najczęściej deuteru i trytu) łączą się pod wpływem bardzo wysokiej temperatury tworząc hel w procesie fuzji nuklearnej. Niezbędna do zapoczątkowania fuzji temperatura uzyskiwana jest w drodze detonacji ładunku jądrowego. Ładunki tego typu z uwagi na swą niekontrolowaną naturę, znajdują jedynie wojskowe zastosowanie destrukcyjne.

Historia[edytuj | edytuj kod]

1 listopada 1952 amerykańscy fizycy pod kierunkiem Edwarda Tellera i Polaka Stanisława Ulama, doprowadzili na atolu Eniwetok do pierwszego wybuchu bomby termojądrowej "Mike". Bomba wykorzystywała deuter i tryt jako paliwo termojądrowe. Siłę wybuchu oszacowano na 10,4 megaton (MT) czyli około 700 bomb jądrowych zrzuconych na Hiroszimę. Przy projektowaniu bomby termojądrowej użyty był komputer MANIAC I.

8 miesięcy później, 20 sierpnia 1953 na terytorium radzieckim miała miejsce eksplozja bomby wodorowej (bomba H), którą wykryły zachodnie sejsmografy.

Największą dotychczas wywołaną eksplozją była detonacja ładunku termojądrowego zawartego w radzieckiej "Car Bombie". Bomba została zdetonowana 30 października 1961 na wysokości 4 km na Nowej Ziemi. Siłę jej wybuchu oszacowano na 58 megaton (prawie 4000 bomb zrzuconych na Hiroszimę) i dano miano "Zabójcy Miast". Wybuch wzniecił w górę takie ilości pyłów, że zasłoniły niebo na Nowej Ziemi na długi czas. Konstrukcja bomby umożliwiała wybuch z mocą 150 MT, jednakże siłę eksplozji ograniczono z obawy przed trudnymi do przewidzenia skutkami wybuchu.

Ładunkiem termojądrowym o najmniejszej sile wybuchu była brytyjska bomba "Short Granite" zdetonowana 15 maja 1957 na wyspie Malden (opodal atolu Kiritimati) na wysokości 2400 m. Bomba została zrzucona z samolotu. Siłę jej wybuchu oszacowano na 300 kiloton[potrzebne źródło].

Zasada działania[edytuj | edytuj kod]

Schemat budowy ładunku termojądrowego
A - Stopień rozszczepienia (ładunek pierwotny)
B - Stopień fuzji (ładunek właściwy (wtórny))
1 - chemiczny materiał wybuchowy
2 - osłona z uranu238
3 - próżnia
4 - pluton lub uran zawierający tryt w stanie gazowym
5 - styropian
6 - osłona uranu238
7 - deuterek litu-6 (paliwo fuzji)
8 - pluton
9 - reflektor

Reakcja termojądrowa to synteza jąder lekkich pierwiastków, w wyniku której powstają jądra cięższe o większej energii wiązania w przeliczeniu na jeden nukleon. Warunkami umożliwiającymi reakcję syntezy jest silne rozpędzenie jąder atomowych (wysoka temperatura) oraz duża koncentracja odpowiednich jąder. Warunki takie uzyskuje się przez wybuch bomby jądrowej, w centrum której umieszczono materiał do syntezy termojądrowej.

Ze względu na to, że wybuch bardzo szybko rozrzuca reagujące materiały należy zastosować w bombie materiały umożliwiające przeprowadzenie reakcji termojądrowej w jak najniższej temperaturze. Pierwsze bomby zawierały deuter i tryt, ale tryt nie jest zbyt trwały (ma względnie krótki okres półtrwania – 12,26 lat) i tak skonstruowanej bomby nie można zbyt długo przechowywać. Rozwiązaniem jest generowanie trytu w trakcie wybuchu bomby. Tryt otrzymywany jest z litu poprzez bombardowanie jego jąder neutronami pochodzącymi głównie z rozszczepienia jąder ładunku inicjującego, którym jest zazwyczaj uranowa lub plutonowa bomba jądrowa o stosunkowo niewielkiej mocy. Zastosowanie związków deuteru i trytu z litem znacznie upraszcza konstrukcję bomby, umożliwiając przechowywanie tych substancji w stanie stałym, bez instalacji chłodzących.

Schemat głównych reakcji zachodzących w ładunku termojądrowym:

6Li + n → 4He + T + 4,8 MeV

T + D4He +n + 17,6 MeV

D + D → T + p + 4 MeV

D + D → ³He + n + 3,3 MeV

Zasadnicze znaczenie mają dwie pierwsze reakcje, tworzą one samopodtrzymujący się cykl. Pierwsza dostarcza tryt dla drugiej, a druga neutrony dla pierwszej. Dwie pozostałe reakcje zachodzą z mniejszą częstością.

Typy ładunków termojądrowych[edytuj | edytuj kod]

Bomba o konstrukcji wyżej opisanej jest nazywana bombą o ładunku dwufazowym. Faza I – reakcja rozszczepienie uranu lub plutonu, faza II – synteza helu.

W pierwszej i w drugiej fazie wybuchu ładunku wydziela się znaczna ilość szybkich neutronów. Większość z nich ucieka poza obszar wybuchu. Neutrony te można wykorzystać do inicjowania rozszczepienia jąder ulegających rozszczepieniu w wyniku bombardowania szybkimi neutronami.

W wersji trójfazowej ładunek o konstrukcji opisanej wyżej otacza się dodatkową powłoką z izotopu 238 uranu lub 232 toru, która spełnia w pierwszym etapie rolę ekranu odbijającego neutrony, a następnie sama ulega rozszczepieniu. Izotopy te nie ulegają łańcuchowej reakcji rozszczepienia, ale w końcu bombardujące je szybkie neutrony powstałe w pierwszych dwóch etapach powodują ich rozszczepienie, co znacznie zwiększa sumaryczną moc wybuchu.

Specjalnym rodzajem ładunku termojądrowego jest bomba neutronowa. Siła jej wybuchu jest relatywnie niewielka, małe jest również skażenie promieniotwórcze terenu. Czynnikiem niszczącym jest natomiast promieniowanie neutronowe, zabójcze dla żywych organizmów.

Skutki eksplozji termojądrowej[edytuj | edytuj kod]

W wyniku eksplozji wielostopniowej bomby wodorowej o mocy 20 MT, kula ognia (fireball) ogarnie obszar w odległości ok. 3 km w każdym kierunku od punktu detonacji (strefa zero). W odległości do 6,4 kilometra, podmuch powietrza spowoduje skokowy wzrost ciśnienia do ok. 440 kPa, zaś prędkość wiatru przekroczy 1040 km/h. Spowoduje to zdruzgotanie nawet ukrytych pod ziemią schronów przeciwbombowych. Na dystansie 26,6 km od miejsca detonacji, rozszerzająca się fala cieplna zdolna będzie do zapalenia wszystkich palnych materiałów na swej drodze - domów, ubrań, roślin, paliw, itp., wzniecając setki tysięcy pożarów, zaś siła wiatru na tym obszarze przekroczy prędkość 160 km/h, co zamieni pożary w ogromną "burzę ogniową" i rozniesie ją na odległość 48 km, co stanowi łączny obszar 1280 km². Szacunki ofiar w ludziach dla ok. 3-milionowej strefy metropolitalnej wielkości San Diego wynoszą ok. 1 miliona zabitych osób w ciągu kilku minut i 500 000 rannych od uderzeń niesionych wiatrem płonących szczątków, ciężko poparzonych, z utratą słuchu, wzroku, czy też spowodowanym olbrzymim ciśnieniem powietrza pęknięciem płuc[1].

Zobacz też[edytuj | edytuj kod]

Przypisy

  1. Bradley Graham: HIT TO KILL The new Battle Over Shielding America From Missile Attack. Public Affairs, Nowy Jork, 2001. ISBN 1-58648-209-2.