Żelazo

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj
Ten artykuł dotyczy pierwiastka chemicznego. Zobacz też: inne znaczenia tego słowa.
Żelazo
mangan ← żelazo → kobalt
Wygląd
srebrzystobiały
Żelazo
Widmo emisyjne żelaza
Widmo emisyjne żelaza
Ogólne informacje
Nazwa, symbol, l.a. żelazo, Fe, 26
(łac. ferrum)
Grupa, okres, blok 8, 4, d
Stopień utlenienia -II, -I, 0, I, II, III, IV, V, VI[3]
Właściwości metaliczne metal przejściowy
Właściwości tlenków amfoteryczne
Masa atomowa 55,845(2) u[4][a]
Stan skupienia stały
Gęstość 7874 kg/m³[1]
Temperatura topnienia 1538 °C[1]
Temperatura wrzenia 2861 °C[1]
Numer CAS 7439-89-6
PubChem 23925[5]
Jeżeli nie podano inaczej, dane dotyczą
warunków normalnych (0 °C, 1013,25 hPa)

Żelazo (Fe, łac. ferrum) – metal z VIII grupy pobocznej o dużym znaczeniu gospodarczym, znane od czasów starożytnych.

Posiada 25 izotopów z przedziału mas 45–69. Trwałe są izotopy 54, 56, 57 i 58. Najwięcej jest izotopu 56 (92%).

Właściwości chemiczne i fizyczne[edytuj]

Czyste żelazo jest lśniącym, srebrzystym, dość twardym i stosunkowo trudnotopliwym metalem, który ulega pasywacji[7][8]. Domieszka krzemu bądź węgla, związana z procesem otrzymywania metalu z rud żelaza, zwiększa głębokość i szybkość korozji. Od wieków jest stosowane w formie stopów z węglem, czyli żeliwa i stali, oraz stopów z manganem, chromem, molibdenem, wanadem i wieloma innymi (są to tzw. stale stopowe).

Odmiany alotropowe[edytuj]

W literaturze żelazu przypisuje się różną liczbę odmian alotropowych:

Dwie odmiany alotropowe[9]:

  • żelazo α występujące w dwóch odmianach:
    • niskotemperaturowej α – trwałej do temperatury 912 °C; sieć krystaliczna: układ regularny przestrzennie centrowany (bcc) typu A2 (komórka elementarna 2,86 Å); do temperatury 768 °C jest ferromagnetykiem, powyżej zaś jest paramagnetykiem;
    • wysokotemperaturowej α(δ), odpowiadającej żelazu δ poniżej – trwałej od 1394 °C do 1538 °C; sieć krystaliczna: układ regularny przestrzennie centrowany bcc typu A2 (2,93 Å);
  • żelazo γ – trwałe w zakresie 912–1394 °C, sieć krystaliczna: układ regularny ściennie centrowany (fcc) typu A1 (3,65 Å).

Cztery odmiany alotropowe[10]:

  • żelazo α – trwałe do temperatury Curie (768 °C), ferromagnetyk, sieć krystaliczna: układ regularny wewnętrznie centrowany (bcc) typu A2 (komórka elementarna 2,86 Å);
  • żelazo β – trwałe w zakresie 768–910 °C, paramagnetyk, sieć krystaliczna: bcc typu A2 (2,90 Å);
  • żelazo γ – trwałe w zakresie 910–1400 °C, sieć krystaliczna: układ regularny ściennie centrowany (fcc) typu A1 (3,64 Å);
  • żelazo δ – trwałe od 1400 do 1535 °C (temperatura topnienia), sieć krystaliczna: bcc typu A2 (2,93 Å).

Zastosowanie związków żelaza[edytuj]

Oprócz minerałów duże znaczenie technologiczne mają karbonylkowe kompleksy żelaza, które otrzymuje się z chlorków żelaza i które są katalizatorami licznych reakcji organicznych. Żółty chlorek żelaza(II) o kwaskowym smaku jest podawany przy niedokrwistości.

Występowanie w skorupie ziemskiej[edytuj]

Żelazo jest szeroko rozprzestrzenione w skorupie ziemskiej i jego zawartość wynosi ok. 6,2% (co stawia żelazo na 4. miejscu wśród pierwiastków i 2. miejscu wśród metali).

Żelazo występuje w minerałach takich jak np.:

Wydobycie[edytuj]

W wydobyciu rud żelaza w 2003 roku, wynoszącym ogółem ok. 1 mld ton, przodowały: Chiny (240 mln ton), Brazylia (215 mln ton), Australia (ok. 190 mln ton), Rosja (90 mln ton) i Indie (80 mln ton).

W Polsce zasobów żelaza w okolicach Suwałk nie wydobywa się w związku z groźbą zaistnienia katastrofy ekologicznej oraz z uwagi na głębokie położenie złóż[11]

Państwa wydobywające najwięcej rud żelaza (2010)
(w milionach ton)[12]
1  Chiny 900
2  Australia 420
3  Brazylia 370
4  Indie 260
5  Rosja 100
6  Ukraina 72
7  Południowa Afryka 55
8  Stany Zjednoczone 49
9  Kanada 35
10  Iran 33
Łącznie na świecie 2,4 mld ton


Znaczenie biologiczne żelaza[edytuj]

Żelazo należy do mikroelementów o decydującym znaczeniu dla prawidłowego funkcjonowania organizmu. Znajduje się w grupach prostetycznych wielu ważnych białek (metaloprotein): hemoglobinie, mioglobinie, w tym też w centrach aktywnych licznych enzymów takich jak: katalaza, peroksydazy oraz cytochromy. Zapotrzebowanie na żelazo u człowieka jest zmienne i zależy od wieku, płci i stanu organizmu. U osób dorosłych wynosi ono od 1 mg/dobę u mężczyzn do 2 mg u kobiet, z zastrzeżeniem, że w okresie ciąży i karmienia powinno to być ok. 3 mg/dobę[13].

Różnice w przyswajalności żelaza z pożywienia są bardzo duże w zależności od diety, od 1–2% dla diety wyłącznie zbożowej, do 25% dla diety mięsnej. Dla średniej, mieszanej diety przyswajalność żelaza wynosi ok. 10%, co oznacza konieczność spożywania ok. 10-krotnie większej ilości żelaza niż wynosi jego zapotrzebowanie przez organizm[14]. Niekiedy spożycie nie zaspokaja zapotrzebowania organizmu na ten pierwiastek, co po pewnym czasie prowadzi do jego niedoboru i objawów chorobowych z nim związanych (niedokrwistość z niedoboru żelaza). Czasem mimo istniejących mechanizmów regulacyjnych organizmu, może dojść do stanów przeciążenia żelazem. Schorzeniem związanym z nadmiarem żelaza w organizmie jest hemochromatoza. Duże ilości soli żelaza(II) są toksyczne. Związki żelaza(III–VI) są nieszkodliwe, ponieważ się nie wchłaniają.

Prawidłowe stężenie żelaza w surowicy krwi[15]:

  • wartość średnia
    • mężczyźni 21,8 μmol/l, 120 μg/dl
    • kobiety 18,5 μmol/l, 100 μg/dl
  • wartość skrajna
    • mężczyźni 17,7–35,9 μmol/l, 90–200 μg/dl
    • kobiety 11,1–30,1 μmol/l, 60–170 μg/dl

Żelazo wchłania się w dwunastnicy i jelicie cienkim w postaci Fe2+. Po wchłonięciu wiązane jest przez apoferrytynę w błonie śluzowej przewodu pokarmowego. Powstaje ferrytyna, a żelazo znajduje się wtedy na III stopniu utlenienia. We krwi transportowane jest przez transferrynę. Magazynowane jest w wątrobie również w postaci ferrytyny.

Niedobór spotyka się w stanach zwiększonego zapotrzebowania, zaburzeń wchłaniania lub zwiększonej utraty żelaza. W takim przypadku może wystąpić niedokrwistość. Należy wprowadzić suplementację preparatami żelaza. Powinno się stosować ją m.in. u osób po zabiegach operacyjnych z dużą utratą krwi, u osób z krwawieniami z przewodu pokarmowego, z dróg rodnych, kobiet ciężarnych, karmiących, przy obfitych menstruacjach, u wcześniaków, u dzieci po konflikcie serologicznym, u osób z zaburzeniami wchłaniania żelaza.

Źródła żelaza: mięso, wątroba, ryby, żółtko jaj, twaróg, orzechy, mleko, warzywa strączkowe, brokuły, krewetki[potrzebny przypis]. Szpinak, wbrew obiegowym opiniom, zawiera umiarkowane ilości żelaza[16] i jest ono w formie słabo przyswajalnej przez człowieka[17].

Znaczenie w botanice[edytuj]

Niedobór żelaza u roślin powoduje zakłócenia przebiegu fotosyntezy i chlorozę młodych liści.

Zobacz też[edytuj]

Uwagi

  1. Wartość w nawiasie oznacza niepewność związaną z ostatnią cyfrą znaczącą.

Przypisy

  1. a b c CRC Handbook of Chemistry and Physics. David R. Lide (red.). Wyd. 83. Boca Raton: CRC Press, 2002. ISBN 9780849315565.
  2. Żelazo (ang.). Karta charakterystyki produktu Sigma-Aldrich (Merck KGaA) dla Stanów Zjednoczonych. [dostęp 2011-10-05].
  3. Adam Bielański: Podstawy chemii nieorganicznej. Wyd. 5. T. 1–2. Warszawa: Wydawnictwo Naukowe PWN, 2006, s. 918. ISBN 8301138173.
  4. publikacja w otwartym dostępie – możesz ją przeczytać Juris Meija, Tyler B. Coplen, Michael Berglund, Willi A. Brand i inni. Atomic weights of the elements 2013 (IUPAC Technical Report). „Pure and Applied Chemistry”. 88 (3), s. 265–291, 2016. DOI: 10.1515/pac-2015-0305. 
  5. Żelazo – podsumowanie (ang.). PubChem Public Chemical Database.
  6. Thermal and physical properties of pure metals. W: CRC Handbook of Chemistry and Physics. David R. Lide (red.). Wyd. 88. Boca Raton: CRC Press, 2007, s. 12-196. ISBN 9780849304880.
  7. Pasywacja. Agencja Promocyjna METALE. [dostęp 2014-08-30].
  8. Barbara Surowska: Wybrane zagadnienia z korozji i ochrony przed korozją. Lublin: Politechnika Lubelska, 2002, s. 18.
  9. Leszek A. Dobrzański: Metaloznawstwo opisowe stopów żelaza, wyd. I, Wydawnictwo Politechniki Śląskiej, Gliwice 2007, s. 13–15.
  10. Włodzimierz Trzebiatowski: Chemia nieorganiczna. Wyd. VIII. Warszawa: PWN, 1978, s. 566–567.
  11. Państwowy Instytut Geologiczny, Rudy żelaza, tytanu i wanadu.
  12. http://minerals.usgs.gov/minerals/pubs/commodity/iron_ore.
  13. Interna Szczeklika. Podręcznik chorób wewnętrznych. Kraków: Medycyna Praktyczna, 2012, s. ?. ISBN 9788374303361.
  14. Requirements of Vitamin A, Iron, Folate, and Vitamin B12. Report of a Joint FAO/WHO Expert Consultation. FAO, 1988, s. 33–50. ISBN 9789251026250.
  15. „Fizjologia człowieka z elementami fizjologii stosowanej i klinicznej” pod red. Władysława Z. Traczyka i Andrzeja Trzebskiego; Wyd. III zmienione i uzupełnione.
  16. Matthew Biggs, Jekka McVicar, Bob Flowerdew: Wielka księga warzyw, ziół i owoców. Warszawa: Dom Wydawniczy Bellona, 2007, s. 174–175. ISBN 83-11-10578-2.
  17. 28.2.1. W: Edward Bańkowski: Biochemia. Podręcznik dla studentów uczelni medycznych. Wyd. II. Elsevier Urban & Partner, 2009, s. 406.