Funkcja Gudermanna

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania
Wykres funkcji Gudermanna

Funkcja Gudermannafunkcja specjalna nazwana od imienia niemieckiego matematyka, Christopha Gudermanna, zwana także amplitudą hiperboliczną lub gudermanianem, wyraża się wzorem:

Najważniejsze własności[edytuj | edytuj kod]

Jak widać, stosowane funkcji Gudermanna ukazuje naturalny pomost, jaki istnieje między funkcjami cyklometrycznymi a hiperbolicznymi, bez potrzeby odwoływania się do narzędzi analizy zespolonej.

Zauważmy, że:

Prawdziwe są następujące tożsamości:

Istnieje sposób wyrażenia funkcji wykładniczej przy użyciu funkcji Gudermanna:

Pochodna funkcji Gudermanna wyraża się wzorem:

Funkcja odwrotna[edytuj | edytuj kod]

Funkcja odwrotna do funkcji Gudermanna (oznaczamy ją lub ) wyraża się wzorem:

Ponadto prawdziwe jest równanie:

Pochodna funkcji odwrotnej do funkcji Gudermanna wyraża się wzorem:

Zobacz też[edytuj | edytuj kod]

Bibliografia[edytuj | edytuj kod]

  • CRC Handbook of Mathematical Sciences 5th ed. pp 323-5.