Funkcja stała

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj
przykłady funkcji stałych

Funkcja stałafunkcja przyjmująca tę samą wartość niezależnie od argumentu.

Definicja[edytuj]

Niech będą niepustymi zbiorami. Funkcją stałą nazywa się funkcję taką, że .

Przykłady[edytuj]

  • Każda funkcja liniowa dla

Rachunek różniczkowy[edytuj]

Funkcja różniczkowalna Parser nie mógł rozpoznać (MathML z przejściem w SVG lub PNG (zalecane dla nowoczesnych przeglądarek i narzędzi zwiększenia dostępności): Invalid response ("Math extension cannot connect to Restbase.") from server "/mathoid/local/v1/":): f:{\mathbb {R}}\to {\mathbb {R}} jest funkcją stałą wtedy i tylko wtedy, gdy jej pochodna jest tożsamościowo równa zero.

Teoria obliczeń[edytuj]

Funkcje stałe mają ważne znaczenie w teorii obliczeń: w rachunku kombinatorów kombinator stały (generujący funkcje stałe) i kombinator rozdzielonej aplikacji tworzą już kompletny system umożliwiający obliczenie dowolnej funkcji.

Zobacz też[edytuj]