Granica funkcji

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Granica funkcji – wartość, do której obrazy danej funkcji zbliżają się nieograniczenie dla argumentów dostatecznie bliskich wybranemu punktowi. Funkcjonują dwie równoważne definicje podane przez Augustina Louisa Cauchy’ego oraz Heinricha Eduarda Heinego.

1 0,841471
2 0,958851
...
10 0,998334
...
100 0,999983

Dodatnia liczba całkowita staje się coraz większa, wartość staje się coraz bliższa Mówimy, że granica jest równa

Historia[edytuj | edytuj kod]

Pojęcie to znane było intuicyjnie już w starożytności. Stosowano je wówczas do obliczania pól figur geometrycznych za pomocą tzw. metody wyczerpywania, która polegała na wpisywaniu w daną figurę geometryczną ciągu figur o znanych polach (pomysł wykorzystywany jest do dzisiaj w nieco zmodyfikowanej formie jako całka oznaczona, np. Lebesgue’a). Łaciński termin oznaczający granicę, „limes”, pojawił się w XVII wieku w pracach Newtona oraz Leibniza w związku z próbami uściślenia tego pojęcia.

Współczesna definicja granicy funkcji powstała w XIX wieku wraz z rozwojem analizy matematycznej. Pierwszą ścisłą definicję granicy funkcji, sformułowaną za pomocą pojęć arytmetycznych, podał Cauchy, a współczesne brzmienie nadał jej Weierstrass.

Granica w punkcie[edytuj | edytuj kod]

Funkcja określona na zbiorze ma w punkcie skupienia tego zbioru granicę równą jeżeli spełniony jest jeden z równoważnych warunków

1. definicja Heinego:

dla każdego ciągu takiego, że dla dowolnego oraz ciąg wartości funkcji dąży do gdy

2. definicja Cauchy’ego:

co czytamy następująco: dla każdej liczby istnieje liczba taka, że dla każdego z nierówności wynika nierówność

3. definicja przez ciągłość[1]: jest taką wartością, którą należy nadać funkcji w punkcie by była w tym punkcie ciągła:

jest ciągła w (Ta definicja stosuje się do wszystkich funkcji, nie tylko liczbowo-liczbowych.)

Warunek w definicji Cauchy’ego oznacza, że nie testujemy W definicji przez ciągłość pojawia się w to miejsce warunek który jest oczywiście spełniony, bo

Jeżeli istnieje granica funkcji w punkcie i jest równa to piszemy

i czytamy „ dąży do gdy dąży do [1]

lub równoważnie

co czytamy: „limes przy dążącym do równa się ”.

Dlatego granica jako nie istnieje.

Granica jednostronna[edytuj | edytuj kod]

 Zobacz też: Granica jednostronna.

Granica jednostronna jest wspólną nazwą dla granicy lewostronnej i prawostronnej. Wyżej rozważaną granicę nazywa się czasami (w opozycji do ukazanej w tej sekcji) obustronną. Jeżeli granice lewo- i prawostronna istnieją i są sobie równe, to są one granicą obustronną; twierdzenie odwrotne też jest prawdziwe: jeżeli istnieje granica obustronna to obie granice jednostronne istnieją i są jej równe (o ile punkt, w którym obliczamy granice jest odpowiednio lewostronnym lub prawostronnym punktem skupienia dziedziny funkcji).

Liczba jest granicą lewostronną (odpowiednio: prawostronną) funkcji w lewostronnym (odpowiednio: prawostronnym) punkcie skupienia dziedziny, co zapisuje się

przy (odpowiednio: przy )

lub

(odpowiednio: ),

gdy spełnione są warunki określone w jakiejkolwiek z następujących dwu równoważnych definicji:

definicja Heinego
dla każdego ciągu takiego, że dla dowolnego (odpowiednio: )   oraz
ciąg wartości funkcji dąży do przy
definicja Cauchy’ego
(odpowiednio: ).

Granica niewłaściwa[edytuj | edytuj kod]

Funkcja ma w punkcie granicę niewłaściwą co zapisuje się

przy

lub

gdy spełnione są warunki, określone w jakiejkolwiek z następujących dwu równoważnych definicji:

definicja Heinego
dla każdego ciągu takiego, że oraz ciąg wartości funkcji dąży do przy
definicja Cauchy’ego

Analogicznie definiuje się i oznacza się granicę niewłaściwą trzeba tylko wszędzie zamienić na a definicję Cauchy’ego zapisać tak:

Analogicznie określa się niewłaściwe granice lewo- i prawostronną: trzeba w sposób naturalny skombinować informację z tej i poprzedniej podsekcji.

Granica w nieskończoności[edytuj | edytuj kod]

Granica tej funkcji w nieskończoności istnieje

Funkcja określona dla wszystkich (odpowiednio: ) ma granicę w plus (odpowiednio: minus) nieskończoności, co zapisuje się

przy (odpowiednio: )

lub

(odpowiednio: ),

gdy spełnione są warunki, określone w jakiejkolwiek z następujących dwóch równoważnych definicji:

definicja Heinego
dla każdego ciągu takiego, że dla każdego oraz (odpowiednio: dla każdego oraz ),
ciąg wartości funkcji dąży do przy
definicja Cauchy’ego
Asymptota pozioma

(odpowiednio ).

Granica niewłaściwa w nieskończoności[edytuj | edytuj kod]

Funkcja określona na przedziale ma w nieskończoności granicę niewłaściwą co zapisuje się

przy

lub

gdy spełnione są warunki określone w jakiejkolwiek z następujących dwóch równoważnych definicji:

definicja Heinego
dla każdego ciągu takiego, że dla każdego oraz ciąg wartości funkcji dąży do przy
definicja Cauchy’ego

Analogicznie definiuje się:

  • granicę niewłaściwą funkcji w
  • granicę niewłaściwą funkcji w
  • granicę niewłaściwą funkcji w

Własności[edytuj | edytuj kod]

  • Jeśli funkcje i określone na zbiorze mają granice właściwe i to:
    • gdy oraz

Uwaga: twierdzenie to jest prawdziwe również dla granic w nieskończoności.

    • Należy pamiętać, że twierdzenie odwrotne nie jest prawdziwe, np. to, że nie oznacza, że istnieją granice czy W podanym przykładzie granica nie istnieje, natomiast
  • Twierdzenie o granicy funkcji złożonej.
Jeśli funkcja ma w punkcie granicę funkcja ma w punkcie granicę przy czym i są odpowiednio punktami skupienia zbiorów oraz przy czym dla każdego z pewnego sąsiedztwa punktu to

Wymienione niżej własności są prawdziwe także w przypadku granic jednostronnych i w nieskończoności:

  • oraz w pewnym sąsiedztwie
  • oraz
  • oraz
  • oraz w pewnym sąsiedztwie
  • oraz w pewnym sąsiedztwie

Zobacz też[edytuj | edytuj kod]

Przypisy[edytuj | edytuj kod]

  1. a b Witold Kleiner, Analiza matematyczna, t. 1, Państwowe Wydawnictwo Naukowe, Warszawa 1986, ​ISBN 83-01-06460-7​, s. 103.

Bibliografia[edytuj | edytuj kod]