Hipoteza continuum

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Hipoteza continuum (CH, ang. continuum hypothesis) – postawiona w roku 1878 przez Georga Cantora hipoteza teorii mnogości dotycząca mocy zbiorów liczb naturalnych i liczb rzeczywistych.

Posługując się rozumowaniem przekątniowym, Cantor wykazał, że moce powyższych zbiorów nie są równe. W jego dalszych rozważaniach pojawiło się następujące, naturalne pytanie: „czy istnieje zbiór, którego moc jest większa od mocy zbioru liczb naturalnych, a zarazem mniejsza od mocy zbioru liczb rzeczywistych?”, jednakże odpowiedź na nie okazała się być daleko nieoczywista. Cantor wysunął hipotezę – zwaną właśnie hipotezą continuum – że takiego zbioru nie ma. Fakt, że nie potrafił on jej udowodnić, sprawił, że Cantor zwątpił w sensowność stworzonej przez siebie teorii mnogości.

W 1940 roku ukazała się praca Kurta Gödla, w której autor dowiódł, że hipoteza continuum jest niesprzeczna z aksjomatami ogólnie przyjętej teorii mnogości Zermela-Fraenkla. W 1963 roku Paul Cohen udowodnił niezależność hipotezy continuum od wspomnianych aksjomatów, co oznacza, że nie popadając w sprzeczność, można do nich dołączyć zarówno zdanie stwierdzające prawdziwość hipotezy, jak i jego zaprzeczenie.

W nowoczesnym sformułowaniu (pod założeniem aksjomatu wyboru) hipotezą continuum nazywa się następujące zdanie:

gdzie po lewej stronie równości znajduje się pierwsza nieprzeliczalna liczba kardynalna, a po prawej – liczba kardynalna continuum.

Uogólniona hipoteza continuum (GCH, ang. generalized continuum hypothesis) to zdanie mówiące, że dla żadnego zbioru nieskończonego nie istnieje zbiór którego moc byłaby większa od mocy zbioru ale mniejsza od mocy zbioru potęgowego Uogólniona hipoteza continuum pociąga aksjomat wyboru. Jednym z jej następstw jest następujące twierdzenie Jesienina-Wolpina:

Pod założeniem GCH dla każdej nieprzeliczalnej liczby kardynalnej istnieje zwarta przestrzeń Hausdorffa ciężaru o tej własności, że każda przestrzeń Banacha ciężaru jest izometrycznie izomorficzna z podprzestrzenią liniową przestrzeni tj. przestrzeni Banacha funkcji ciągłych na z normą supremum[1].

Zobacz też[edytuj | edytuj kod]

Przypisy[edytuj | edytuj kod]

  1. A.C. Yesenin-Volpin, On the existence of a universal bicompact of arbitrary weight, „Dokl. Akad. Nauk USSR” 68 (1949), s. 649–652.

Linki zewnętrzne[edytuj | edytuj kod]