Korelacja elektronowa

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj

Korelacja elektronowa (korelacja kulombowska) to wszystkie efekty uwzględnione przy wyjściu poza przybliżenie jednoelektronowe. Wynika stąd, że w rzeczywistości ruch elektronu zależy od chwilowego położenia pozostałych elektronów. Te chwilowe położenia mogą być zastąpione położeniem uśrednionym jedynie w przybliżeniu. Przybliżenie jednoelektronowe umożliwia sprowadzenie zagadnienia wieloelektronowego do antysymetryzowanego iloczynu (wyznacznika Slatera) funkcji jednoelektronowych (orbitali).

Energia korelacji[1] jest równa różnicy ścisłej energii (wynikającej z rozwiązania równania Schrödingera dla prawdziwej funkcji wieloelektronowej) i energii obliczonej w metodzie Hartree-Focka, która to energia jest najlepszą energią w przybliżeniu jednoelektronowym (obowiązuje zasada wariacyjna, zgodnie z którą energia otrzymana z dowolnej funkcji falowej - tu: funkcji Hartree-Focka jest nie niższa, niż energia odpowiadająca prawdziwej - uwzględniającej korelację - funkcji falowej).

Korelację elektronową uwzględniają metody wielowyznacznikowe , jak na przykład metoda oddziaływania konfiguracji (ang. configuration interaction, CI). Metoda FCI (pełne CI, ang. full CI), uwzględniające wszystkie możliwe wzbudzenia, daje w wyniku najlepszą - a zatem na mocy zasady wariacyjnej: najniższą energię, możliwą do osiągnięcia w danej bazie funkcyjnej przybliżeniu nierelatywistycznym.


Efekty korelacyjne zalicza się do dwóch kategorii:

  • korelacja statyczna, która wynika z niedostatecznego opisu stanów bliskich degeneracji w metodzie Hartree-Focka,
  • korelacja dynamiczna, w której mieszczą się pozostałe efekty korelacji ruchu elektronów.

Przypisy

  1. Per-Olov Löwdin. Quantum Theory of Many-Particle Systems. III. Extension of the Hartree–Fock Scheme to Include Degenerate Systems and Correlation Effects. „Physical Review”. 97 (6), s. 1509–1520, March 1955. American Physical Society. DOI: 0.1103/PhysRev.97.1509. Bibcode1955PhRv...97.1509L.