Liczba doskonała

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Liczba doskonałaliczba naturalna, która jest sumą wszystkich swych dzielników właściwych (to znaczy od niej mniejszych). Korzystając z pojęcia funkcji σ, można liczby doskonałe definiować jako te, dla których zachodzi warunek:

Najmniejszą liczbą doskonałą jest , ponieważ Następną jest ponieważ

Kolejnymi są i

Największą znaną obecnie (7 grudnia 2018) liczbą doskonałą jest liczy ona 24 862 048 cyfr w rozwinięciu dziesiętnym[1].

Wszystkie znane liczby doskonałe są parzyste. Nie udało się dotąd znaleźć żadnej liczby doskonałej nieparzystej, ani dowodu, że liczby takie nie istnieją.

Metoda Euklidesa znajdowania liczb doskonałych[edytuj | edytuj kod]

W IX księdze Elementów Euklides podał sposób znajdowania liczb doskonałych parzystych:

należy obliczać sumy kolejnych potęg dwójki Jeżeli któraś z otrzymanych sum okaże się liczbą pierwszą, należy pomnożyć ją przez ostatni składnik i otrzymamy liczbę doskonałą.

Sposób podany przez Euklidesa każe badać kolejno sumy:

Są to sumy ciągu geometrycznego o ilorazie więc mają one postać Jeśli któraś z tych liczb okaże się liczbą pierwszą, to jest liczbą doskonałą.

Własności[edytuj | edytuj kod]

Leonhard Euler udowodnił, że każda liczba doskonała parzysta ma postać gdzie jest liczbą pierwszą (nietrudno pokazać, że wtedy również jest liczbą pierwszą) – daje to wzajemnie jednoznaczną odpowiedniość liczb doskonałych parzystych z liczbami pierwszymi Mersenne’a.

Euler udowodnił, że każda liczba doskonała nieparzysta musi być postaci gdzie jest liczbą pierwszą postaci Wiadomo też, że jeśli liczba taka istnieje, to musi być większa od

Zobacz też[edytuj | edytuj kod]

Przypisy[edytuj | edytuj kod]

  1. List of known Mersenne prime numbers – PrimeNet, www.mersenne.org [dostęp 2020-02-19] (ang.).

Bibliografia[edytuj | edytuj kod]

Linki zewnętrzne[edytuj | edytuj kod]