Liczby wymierne

Z Wikipedii, wolnej encyklopedii
(Przekierowano z Liczba wymierna)
Skocz do: nawigacja, szukaj
Definicja intuicyjna
Ułamki liczb całkowitych o niezerowym mianowniku; liczby rzeczywiste mające skończone, bądź okresowe od pewnego miejsca rozwinięcie dziesiętne.

Liczby wymierneliczby, które można zapisać w postaci ilorazu dwóch liczb całkowitych, gdzie druga jest różna od zera. Są to więc liczby, które można przedstawić za pomocą ułamka zwykłego. Zbiór liczb wymiernych oznaczany jest zazwyczaj symbolem Wobec tego:

Liczby wymierne są szczególnym przypadkiem liczb rzeczywistych. Liczbę rzeczywistą, która nie jest wymierna nazywamy liczbą niewymierną. Szczególnym przypadkiem liczb wymiernych są m.in. liczby całkowite i liczby naturalne.

Liczby wymierne tworzą ciało ułamków pierścienia liczb całkowitych. Konstrukcję tę możemy przedstawić w następujący sposób:

Niech w zbiorze par liczb całkowitych których następnik jest różny od zera, dana będzie relacja równoważności

wtedy i tylko wtedy, gdy

W zbiorze klas abstrakcji tej relacji określa się dwa działania

Parę zapisuje się zwykle w postaci ułamka bądź jeśli to parę tę utożsamia się po prostu z liczbą

Własności[edytuj | edytuj kod]

  • Liczby wymierne z dodawaniem, mnożeniem, zerem i jedynką określonymi w poprzedniej sekcji stanowią ciało.
  • Zbiór liczb wymiernych jest równoliczny ze zbiorem liczb naturalnych, czyli jest to zbiór przeliczalny (co oznacza się ).
  • Jako podzbiór przestrzeni liczb rzeczywistych liczby wymierne są gęste w

Zobacz też[edytuj | edytuj kod]