Przejdź do zawartości

Miara borelowska

Z Wikipedii, wolnej encyklopedii

Miara borelowskamiara określona na -ciele podzbiorów borelowskich danej przestrzeni topologicznej, tzn. najmniejszym -ciele zawierającym wszystkie zbiory otwarte tej przestrzeni.

Przykłady

[edytuj | edytuj kod]

Inne rozumienie miary borelowskiej

[edytuj | edytuj kod]

Czasami „miara borelowska” oznacza wszystkie - rzeczywiste bądź zespolone - przeliczalnie addytywne funkcje zbiorów określone na rodzinie zbiorów borelowskich. Takie podejście jest szczególnie popularne w kontekście operowania miarami borelowskimi jako ciągłymi funkcjonałami liniowymi na przestrzeni funkcji ciągłych określonych na pewnej przestrzeni zwartej (por. twierdzenie Riesza).

Zobacz też

[edytuj | edytuj kod]

Bibliografia

[edytuj | edytuj kod]
  • Alexander S. Kechris: Classical descriptive set theory. Nowy Jork: Springer-Verlag, 1995, s. 105-107, seria: Graduate Texts in Mathematics, 156. ISBN 0-387-94374-9.