Notacja Denavita-Hartenberga

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania

Notacja Denavita-Hartenberga wprowadzona została do robotyki w celu uproszczenia opisu „mechanicznych ramion”. W uproszczeniu przedstawia ona sposób na przejście od początku do końca układu połączonych ze sobą obiektów (które mogą być liniami prostymi, prostopadłościanami itp.).

Przykład:

Notacja Denavita-Hartenberga dla wahadła podwójnego

Na rysunku przedstawione zostało podwójne wahadło. Notacja Denavita-Hartenberga pozwala opisać sposób przemieszczenia się z punktu zaczepienia pierwszego wahadła (punktu 0), do punktu zaczepienia drugiego ramienia (punktu 1). W notacji Denavita-Hartenberga przedstawia się to jako:

gdzie:

oraz są symbolami macierzy transformacji elementarnych,
określają kąt o jaki obrócone są wahadła,
są długością wahadeł.

Notacja ta pozwala za pomocą macierzy przedstawić algorytm przemieszczenia, umożliwiający wyznaczenie zależności położenia punktu końcowego od położenia punktów pośrednich.


W robotyce jednym ze sposobów wyznaczenia położenia poszczególnych ogniw manipulatora jest użycie notacji Denavita-Hartenberga (D-H). Metoda ta jest bardzo prosta w zastosowaniu oraz w implementacji w programie komputerowym i pozwala opisać prawie każdy otwarty łańcuch kinematyczny. W celu zastosowania tej metody na początku wyznacza się macierze przejścia pomiędzy kolejnymi elementami łańcucha. W ogólności pojedyncza macierz transformacji z układu w przedstawiona jest jako

gdzie:

– parametry geometryczne,
– zmienna przegubowa

dla przegubu obrotowego oraz

– parametry geometryczne,
– zmienna przegubowa

dla przegubu przesuwnego. Symbole RotZ, TranZ, TranX oraz RotX oznaczają elementarne macierze transformacji.

Złożenie transformacji dla całego łańcucha kinematycznego pozwala wyznaczyć odwzorowanie K:

gdzie:

– symbol przestrzeni współrzędnych wewnętrznych,
– wektor współrzędnych wewnętrznych,
– symbol specjalnej grupy euklidesowej.

Kinematyka manipulatora ma postać

gdzie wektor określa położenie efektora wyrażone w bazowym układzie współrzędnych, natomiast macierz określa jego orientację w przestrzeni również wyrażoną w bazowym układzie współrzędnych.