Artykuł należy uzupełnić o istotne informacje: Artykuł opisuje wyłącznie obrót na płaszczyźnie. Nic nie ma choćby o obrocie w przestrzeni. Dokładniejsze informacje o tym, co należy poprawić, być może znajdują się w dyskusji tego artykułu. Po wyeliminowaniu niedoskonałości należy usunąć szablon {{Dopracować}} z tego artykułu.
Każdy obrót płaszczyzny można przedstawić jako złożenie dwóch symetrii osiowych płaszczyzny o osiach przechodzących przez środek obrotu i tworzących kąt o mierze równej połowie miary kąta obrotu. Prawdziwe jest także twierdzenie odwrotne: złożenie dwóch symetrii osiowych o osiach i przecinających się w punkcie jest obrotem dookoła punktu o kąt skierowany dwukrotnie większy od kąta utworzonego przez proste i
Obrót jest izometrią parzystą płaszczyzny, mającą przynajmniej jeden punkt stały.
Okręgi i koła o środku w punkcie są figurami stałymi obrotu