Przejdź do zawartości

Pęk prostych

Z Wikipedii, wolnej encyklopedii
Niektóre z prostych pęku o środku A

Pęk prostych – zbiór wszystkich prostych spełniających jeden z dwóch warunków:

  • przechodzących przez ustalony punkt[1], zwany środkiem pęku lub wierzchołkiem pęku[1];
  • równoległych do ustalonej prostej (przechodzących przez punkt nieskończoności). W tym drugim przypadku mówi się o niewłaściwym pęku prostych albo o kierunku.

Każde dwie proste na jednej płaszczyźnie są współpękowe; gdy są równoległe, to mówimy, że są współpękowe w sposób niewłaściwy[potrzebny przypis]. Rozważa się też pęki bardziej ogólnych krzywych stożkowych, zdefiniowane analitycznie[2].

Opis analityczny

[edytuj | edytuj kod]

Równanie pęku prostych na płaszczyźnie, o środku wyznaczonym przez nierównoległe proste, zapisujemy w postaci:

gdzie spełniają warunek

Każda prosta przechodząca przez środek pęku da się przedstawić powyższym równaniem (mówimy, że jest współpękowa z wszystkimi prostymi przechodzącymi przez ten punkt) i, na odwrót, każde równanie powyższej postaci przedstawia pewną prostą należącą do pęku.

Jeżeli proste mają odpowiednio równania:

to są one współpękowe (należą do jednego pęku) wtedy i tylko wtedy, gdy istnieją trzy różne od zera liczby takie, że spełnione jest równanie:

lub równoważnie

Zobacz też

[edytuj | edytuj kod]

Przypisy

[edytuj | edytuj kod]
  1. a b pęk prostych, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2021-10-10].
  2. pęk, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2022-03-13].