Prawo Hubble'a

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacji, wyszukiwania
Pierwotny wykres Hubble'a

Prawo Hubble'a jest podstawowym prawem kosmologii obserwacyjnej, wiążącym odległości galaktyk r z ich tzw. prędkościami ucieczki v (których miarą jest przesunięcie ku czerwieni z). Prawo to określa, iż te dwie wielkości są do siebie proporcjonalne, a stałą proporcjonalności jest stała Hubble'a H0:

v=H_0 r\,

Istnienie takiej proporcjonalności przewidział w 1927 roku Georges Lemaître (Annals of the Scientific Society of Brussels, 47, 49), a wykazał jako pierwszy Edwin Hubble w roku 1929. Dokonał on pomiaru odległości do sześciu galaktyk w Grupie Lokalnej przy użyciu cefeid jako świec standardowych, a następnie rozszerzył próbkę do 18 galaktyk, sięgając odległości gromady Virgo i wybierając jako świece najjaśniejsze gwiazdy w galaktykach. Zależność Hubble'a jest prawdziwa dla galaktyk (ściślej: gromad) odpowiednio nam bliskich, lecz na tyle dalekich, że nie są już powiązane grawitacyjnie z Drogą Mleczną i ogólniej z Grupą Lokalną.

Prawo Hubble'a jest matematyczną interpretacją astronomicznego zjawiska, potocznie określanego jako „ucieczka galaktyk”, a objawiającego się tym, że światło niemal wszystkich galaktyk jest przesunięte ku czerwieni. Im większa odległość do danej galaktyki, tym przesunięcie jej widma ku dłuższym falom jest większe. Przez analogię z prawem Dopplera można stwierdzić oddalanie się dowolnej galaktyki względem pozostałych. Wnioskuje się na tej podstawie, że musiały dawniej znajdować się „w jednym miejscu” (bardzo blisko siebie), a ruch wszystkich został zapoczątkowany przez Wielki Wybuch. Prawo Hubble'a (obowiązujące lokalnie) można również wywnioskować na gruncie ogólnej teorii względności przy założeniu, iż Wszechświat jest jednorodny i izotropowy. Ekspansja jest wówczas opisana równaniem Friedmanna. Oprócz efektu związanego z ruchem galaktyk, zmiana długości fali elektromagnetycznej docierającej z odległości kosmologicznych jest powodowana również rozszerzaniem się samej przestrzeni.

Odstępstwa od prawa Hubble'a są związane z tzw. prędkościami swoistymi galaktyk. W jednorodnie ekspandującym Wszechświecie prawo Hubble'a jest liniowe i interpretowane jako zależne od czasu kosmicznego. Relacja ta teoretycznie jest spełniona przez wszystkich obserwatorów fundamentalnych, ale w rzeczywistości zależy od wybranego kierunku w przestrzeni.

Stała Hubble'a[edytuj | edytuj kod]

Współczesny wykres obrazujący prawo Hubble'a

Wartość stałej Hubble'a nie jest łatwa do wyznaczenia. Wynika to po pierwsze z problemów z dokładnym określaniem odległości do galaktyk, a po drugie z faktu, że oprócz prędkości wynikających z ekspansji Wszechświata, galaktyki mają również prędkości swoiste, co prowadzi do odstępstw od prawa Hubble'a.

Pierwsze wyznaczenia tego parametru dawały H0 = 500 (km/s)/Mpc. Później stwierdzono, iż wartość tej stałej jest znacznie mniejsza, gdyż mieści się w zakresie od 60 do 80 (km/s)/Mpc.

Zakończone w 2009 r. analizy obserwacji przez Teleskop Hubble'a 240 cefeid w siedmiu galaktykach, dają wartość 74,2 ± 3,6 (km/s)/Mpc[1]. Obserwacyjne wyznaczenie stałej Hubble'a z roku 2010[2] oparte na pomiarze soczewkowania grawitacyjnego z wykorzystaniem Teleskopu Kosmicznego Hubble'a dało wartość H0 = 72,6 ± 3,1 (km/s)/Mpc. Podsumowane wyniki z 7 lat pracy satelity WMAP, także z 2010 roku, dają ocenę H0 = 71,0 ± 2,5 (km/s)/Mpc w oparciu wyłącznie o dane WMAP, a wynik H0 = 70,4 +1,3−1,4 (km/s)/Mpc w oparciu o dane WMAP i inne wcześniej uzyskane wyniki[3]. Obliczenia z 2012 roku, oparte na obserwacjach w podczerwieni wykonanych przez Teleskop Spitzera przynoszą wartość H0 = 74,3 ± 2,1 (km/s)/Mpc[4].

Dane z misji Planck, przedstawione w marcu 2013 roku, wskazują na mniejszą wartość od powyższych wyliczeń: H0 = 67,15 (km/s)/Mpc.[5]

Stała Hubble'a ma wymiar częstotliwości. Jej odwrotność pozwala zgrubnie oszacować wiek Wszechświata, przy założeniu modelu Friedmana-Lemaître'a jako modelu kosmologicznego.

Wyznaczanie stałej Hubble'a[edytuj | edytuj kod]

Najbardziej precyzyjnymi metodami wyznaczenia odległości jasnościowych do pobliskich galaktyk są:

Kalibracja odległości do cefeid w naszej Galaktyce dokonana została na postawie ich paralaksy trygonometrycznej, dzięki obserwacjom z satelity Hipparcos oraz Kosmicznego Teleskopu Hubble'a. Jeszcze dokładniejszych pomiarów ma dostarczyć misja Gaia. Metoda czubka gałęzi czerwonych olbrzymów jest niezależna od użycia cefeid i bazuje na dobrze przeanalizowanym z punktu widzenia astrofizyki gwiazd etapie ewolucyjnym, w którym gwiazda stanowiąca świecę standardową opuszcza gałąź czerwonych olbrzymów w wyniku błysku helowego. Tą metodą uzyskano odległości do ok. 250 galaktyk (Freedman i Madore, 2010). Metoda galaktyk maserowych wykorzystuje mapowanie maserów wodnych w dyskach akrecyjnych. Odległość wyznacza się poprzez porównanie ruchów własnych ośrodków emisji maserowej z keplerowską krzywą rotacji dysku. Galaktyką, dla której uzyskano najlepszy pomiar tą metodą, jest NGC 4258.

Do odległych galaktyk, stosuje się:

  • relację Tully'ego-Fishera dla galaktyk spiralnych
  • metodę fluktuacji jasności powierzchniowej
  • maksimum jasności supernowej typu Ia.

Metoda Tully'ego-Fishera opiera się na porównaniu jasności galaktyki z jej krzywą rotacji i jest jedną z najczęściej stosowanych metod wyznaczania odległości pozagalaktycznych. Metoda fluktuacji jasności powierzchniowej opiera się na analizie wariancji jasności galaktyk eliptycznych, do której istotny wkład wnoszą gwiazdy typu czerwonych olbrzymów. Liczba gwiazd odpowiedzialnych za fluktuacje w poszczególnych pikselach detektora jest proporcjonalna do kwadratu odległości do galaktyki. Supernowe typu Ia są stosowane w kosmologii jako świece standardowe do najdalszych odległości.

Mniej dokładnymi wskaźnikami odległości są na przykład widma gromad kulistych, gwiazdy nowe, a także czerwone i błękitne nadolbrzymy. Gwiazdy zmienne typu RR Lyrae są dobrze skalibrowanymi wskaźnikami, jednak zasięg ich zastosowania nie jest duży z uwagi na niewielkie jasności absolutne.

Dodatkowo, pośrednimi technikami wyznaczania parametrów kosmologicznych, w tym stałej Hubble'a, są: soczewkowanie grawitacyjne i efekt Suniajewa-Zeldowicza. Pierwsza z nich wykorzystuje opóźnienie czasowe między sygnałami pochodzącymi z soczewkowanych obrazów zmiennego źródła, takiego jak kwazar. Opóźnienie to jest odwrotnie proporcjonalne do stałej Hubble'a, zaś mniej zależy od pozostałych parametrów kosmologicznych. Druga metoda wykorzystuje efekt rozpraszania fotonów mikrofalowego promieniowania tła na elektronach w gorącym gazie w gromadach galaktyk. Stałą Hubble'a wyznacza się dzięki temu, że zmiana w widmie energetycznym promieniowania jest niezależna od odległości, zaś strumień rentgenowski gromady jest funkcją odległości.

Przypisy

  1. Hubble Space Telescope refines Hubble’s constant. Astronomy Now, 08.05.2009.
  2. S. H. Suyu, P. J. Marshall, M. W. Auger, S. Hilbert, R. D. Blandford, L. V. E. Koopmans, C. D. Fassnacht and T. Treu. Dissecting the Gravitational Lens B1608+656. II. Precision Measurements of the Hubble Constant, Spatial Curvature, and the Dark Energy Equation of State. The Astrophysical Journal, 2010; 711 (1): 201 DOI: 10.1088/0004-637X/711/1/201.
  3. Seven-Year Wilson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results. nasa.gov. [dostęp 2010-12-02]. (por. str. 39 z tabelą wartości parametrów kosmologicznych).
  4. NASA's Infrared Observatory Measures Expansion of Universe (ang.). ScienceDaily, 2012-10-03. [dostęp 2012-10-04].
  5. Informacja prasowa na stronie ESA [dostęp 2013-03-21] (ang.)

Bibliografia[edytuj | edytuj kod]

  • W. L. Freedman, B.F. Madore, „The Hubble Constant”, Annual Reviews of Astronomy and Astrophysics, 2010, 48, 673