Przestrzeń jednospójna

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania
Sfera jest jednospójna, gdyż każda pętla może być ściągnieta do punktu tak, że podczas ściągania pętla jest stale zawarta w sferze.
Torus jest spójny, ale nie jest jednospójny, gdyż żadna z kolorowych pętli nie może być ściągnięta do punktu.

Przestrzeń jednospójnałukowo spójna przestrzeń topologiczna o trywialnej grupie podstawowej.

Innymi słowy jest to przestrzeń topologiczna spełniająca następujące warunkiː

  1. dowolne dwa punkty można połączyć drogą ( jest łukowo spójna),
  2. dowolną taką krzywą można przekształcić w sposób ciągły, używając tylko punktów należących do tego obiektu, w dowolną inną krzywą łączącą te punkty (każde dwie drogi łączące oraz homotopijne).

Zbiór jednospójny – to zbiór ze strukturą topologiczną, który potraktowany jako przestrzeń topologiczna jest przestrzenią jednospójną.

Twierdzenia[edytuj | edytuj kod]

Tw. 1 Przestrzeń topologiczna jest jednospójna wtedy i tylko wtedy, gdy jest łukowo spójna i każdą zawartą w niej pętlę da się ściągnąć do punktu, przy czym podczas ściągania pętla musi być zawarta w przestrzeni.

Tw. 2 Przestrzeń topologiczna jest jednospójna wtedy i tylko wtedy, gdy jest łukowo spójna i posiada genus zero (tzn. nie ma otworów).

Zbiory z otworem lub otworami (np. torus, okrąg) nie są jednospójne właśnie ze względu na te otwory, które sprawiają, że np. równoleżnika w torusie nie można w sposób ciągły zmniejszyć do punktu[1].

Przykłady[edytuj | edytuj kod]

Przestrzeń niejednospójna, ponieważ pętli okrążających dziury nie da się ściągnąć do punktu.

Obiekty jednospójne:

  • W przestrzeni euklidesowej: odcinek, prosta, koło, kula, sfera n-wymiarowa Sn dla n ≥ 2 (np. sfera w przestrzeni trójwymiarowej).
  • Przestrzeń Euklidesowa Rn.
  • Gdy n > 2, to Rn bez dowolnej liczby punktów, np. bez punktu (0,0).
  • Każdy podzbiór wypukły zawarty w Rn.
  • Każda przestrzeń wektorowa, w tym przestrzenie Banacha i Hilberta.
  • Specjalna grupa unitarna SU(n).

Wszystkie przestrzenie ściągalne są jednospójne (ponieważ każde dwa przekształcenia w przestrzeń ściągalną są homotopijne), jednak nie odwrotnie - na przykład sfera dwuwymiarowa jest jednospójna, ale nie jest ściągalna.

Obiekty niejednospójne:

Przypisy[edytuj | edytuj kod]

  1. Diamenty matematyki - Matematyka - Wirtualny Wszechświat. [dostęp 2009-06-15]. [zarchiwizowane z tego adresu (2009-07-30)].

Bibliografia[edytuj | edytuj kod]

Linki zewnętrzne[edytuj | edytuj kod]

  • Eric W. Weisstein, Simply Connected, [w:] MathWorld [online], Wolfram Research (ang.). [dostęp 2022-10-09].