Geometria rzutowa: Różnice pomiędzy wersjami

Z Wikipedii, wolnej encyklopedii
[wersja nieprzejrzana][wersja przejrzana]
Usunięta treść Dodana treść
To jest prawda dla przestrzeni rzutowej dowolnego wymiaru, ale nieprawda, że każde przekształcenie. Każde wzajemnie jednoznaczne!
Wzorcowy przykład definicji idem per idem. Proste równoległe, czyli z definicji nie przecinające się, gdzieś się jednak przecinają! Czyli punkt w nieskończoności jest to taki punkt, który jest punktem w nieskończoności.
Linia 3: Linia 3:
Przekształceniem rzutowym jest każde wzajemnie jednoznaczne przekształcenie przestrzeni rzutowej wymiaru powyżej 1 zachowujące współliniowość punktów.
Przekształceniem rzutowym jest każde wzajemnie jednoznaczne przekształcenie przestrzeni rzutowej wymiaru powyżej 1 zachowujące współliniowość punktów.


'''Punktem w nieskończoności''' ('''punktem niewłaściwym''', '''punktem nieskończenie dalekim'''<ref>[[David Hilbert]] i [[Stefan Cohn-Vossen]], ''Geometria poglądowa'', Warszawa, 1956, '''rozdział III: ''Konfiguracje'''''</ref>) jest nazywany punkt przecięcia wszystkich prostych o danym [[kierunek|kierunku]], czyli punkt przecięcia wszystkich prostych równoległych.
'''Punktem w nieskończoności''' ('''punktem niewłaściwym''', '''punktem nieskończenie dalekim'''<ref>[[David Hilbert]] i [[Stefan Cohn-Vossen]], ''Geometria poglądowa'', Warszawa, 1956, '''rozdział III: ''Konfiguracje'''''</ref>) jest pewien [[kierunek]], czyli pewien zbiór prostych wzajemnie równoległych.


'''Płaszczyznę rzutową''' otrzymuje się przez dodanie do [[geometria euklidesowa|płaszczyzny euklidesowej]] punktów w nieskończoności.
'''Płaszczyznę rzutową''' otrzymuje się przez dodanie do [[geometria euklidesowa|płaszczyzny euklidesowej]] punktów w nieskończoności.
Linia 11: Linia 11:
Na płaszczyźnie rzutowej nie ma prostych równoległych i każde dwie proste przecinają się w jednym punkcie; podobną konstrukcję przeprowadza się w przestrzeniach o więcej niż dwóch wymiarach.
Na płaszczyźnie rzutowej nie ma prostych równoległych i każde dwie proste przecinają się w jednym punkcie; podobną konstrukcję przeprowadza się w przestrzeniach o więcej niż dwóch wymiarach.


Ważnym pojęciem geometrii rzutowej jest [[zasada dualności]], mówiąca, dowolne prawdziwe twierdzenie na płaszczyźnie rzutowej pozostaje prawdziwe, jeśli zamienimy w nim pojęcia "prosta" i "punkt" (i odpowiednio "przechodzi przez" z "leży na"). Przykładami twierdzeń dualnych są [[twierdzenie Brianchona]] i [[twierdzenie Pascala]].
Ważnym pojęciem geometrii rzutowej jest [[zasada dualności]], mówiąca, że dowolne prawdziwe twierdzenie na płaszczyźnie rzutowej pozostaje prawdziwe, jeśli zamienimy w nim pojęcia "prosta" i "punkt" (i odpowiednio "przechodzi przez" z "leży na"). Przykładami twierdzeń dualnych są [[twierdzenie Brianchona]] i [[twierdzenie Pascala]].


{{Przypisy}}
{{Przypisy}}

Wersja z 14:17, 7 paź 2015

Geometria rzutowa to dział matematyki zajmujący się badaniem własności figur geometrycznych, które nie zmieniają się przy przekształceniach rzutowych. Do najważniejszych pojęć geometrii rzutowej należą: prosta, płaszczyzna oraz dwustosunek czwórki punktów. Twórcą geometrii rzutowej był francuski matematyk Jean-Victor Poncelet, który jej podstawy podał w 1822.

Przekształceniem rzutowym jest każde wzajemnie jednoznaczne przekształcenie przestrzeni rzutowej wymiaru powyżej 1 zachowujące współliniowość punktów.

Punktem w nieskończoności (punktem niewłaściwym, punktem nieskończenie dalekim[1]) jest pewien kierunek, czyli pewien zbiór prostych wzajemnie równoległych.

Płaszczyznę rzutową otrzymuje się przez dodanie do płaszczyzny euklidesowej punktów w nieskończoności.

Prostą rzutową nazywa się prostą euklidesową uzupełnioną o punkt w nieskończoności (tzw. proste właściwe) lub zbiór wszystkich punktów w nieskończoności (tzw. prosta niewłaściwa).

Na płaszczyźnie rzutowej nie ma prostych równoległych i każde dwie proste przecinają się w jednym punkcie; podobną konstrukcję przeprowadza się w przestrzeniach o więcej niż dwóch wymiarach.

Ważnym pojęciem geometrii rzutowej jest zasada dualności, mówiąca, że dowolne prawdziwe twierdzenie na płaszczyźnie rzutowej pozostaje prawdziwe, jeśli zamienimy w nim pojęcia "prosta" i "punkt" (i odpowiednio "przechodzi przez" z "leży na"). Przykładami twierdzeń dualnych są twierdzenie Brianchona i twierdzenie Pascala.

  1. David Hilbert i Stefan Cohn-Vossen, Geometria poglądowa, Warszawa, 1956, rozdział III: Konfiguracje