Zdarzenia losowe niezależne: Różnice pomiędzy wersjami

Z Wikipedii, wolnej encyklopedii
[wersja przejrzana][wersja przejrzana]
Usunięta treść Dodana treść
dodanie A,B należą do \mathcal{A}
Luckas-bot (dyskusja | edycje)
m r2.7.1) (Robot dodał ms:Bebas (teori kebarangkalian)
Linia 47: Linia 47:
[[it:Indipendenza stocastica]]
[[it:Indipendenza stocastica]]
[[he:תלות (הסתברות)]]
[[he:תלות (הסתברות)]]
[[ms:Bebas (teori kebarangkalian)]]
[[nl:Onafhankelijkheid (kansrekening)]]
[[nl:Onafhankelijkheid (kansrekening)]]
[[ja:確率論的独立性]]
[[ja:確率論的独立性]]

Wersja z 03:49, 10 mar 2012

Zdarzenia losowe niezależne - zdarzenia na pewnej ustalonej przestrzeni probabilistycznej spełniające warunek

.

Taka postać warunku na niezależność zdarzeń i wynika z intuicyjnego stwierdzenia: zdarzenie nie zależy od zdarzenia , jeśli wiedza nt. zajścia nie ma wpływu na prawdopodobieństwo zajścia . Co można zapisać jako . Z tej intuicji i wzoru na prawdopodobieństwo iloczynu zdarzeń () wynika powyższy wzór.

Niezależność można definiować także, dla większej liczby zdarzeń. I tak, jeżeli , to mówimy, że są one niezależne, gdy dla każdego ściśle rosnącego ciągu o wyrazach ze zbioru spełniony jest warunek

.

Definicję niezależności można rozszerzyć na nieskończony układ zdarzeń. Dokładniej, mówimy, że zdarzenia są niezależne, gdy dla każdej liczby naturalnej n zdarzenia są niezależne.

Własności

  • Z definicji wynika, że dwa zdarzenia rozłączne są niezależne, gdy przynajmniej jedno z nich ma prawdopodobieństwo zerowe.
  • Gdy zdarzenia są niezależne, to zdarzenia do nich przeciwne też są niezależne oraz:
.

Por. prawa De Morgana.

Niezależność σ-ciał

σ-ciała , gdzie dla nazywamy niezależnymi, gdy dla dowolnych

.

Jeżeli , to przez rozumiemy σ-ciało generowane przez zdarzenie , tzn. najmniejsze σ-ciało zawierające zbiór . Dokładniej, dla

.

Używając tych definicji, niezależność skończonej liczby zdarzeń można scharakteryzować w następujący sposób: zdarzenia są niezależne wtedy i tylko wtedy, gdy σ-ciała są niezależne.

Zobacz też

Bibliografia

  • Jacek Jakubowski, Rafał Sztencel: Wstęp do teorii prawdopodobieństwa. Warszawa: SCRIPT, 2004, s. 43-47.