Ortogonalność: Różnice pomiędzy wersjami

Z Wikipedii, wolnej encyklopedii
[wersja nieprzejrzana][wersja przejrzana]
Usunięta treść Dodana treść
es?
Wycofano ostatnią zmianę treści (wprowadzoną przez 156.17.30.106) i przywrócono wersję 66709328 autorstwa Tarnoob;brak źródła, potrzebny przypis
Znacznik: Ręczne wycofanie zmian
Linia 1: Linia 1:
{{Inne znaczenia|pojęcia matematycznego|[[ortogonalność grup ochronnych]] w [[chemia|chemii]]}}
{{Inne znaczenia|pojęcia matematycznego|[[ortogonalność grup ochronnych]] w [[chemia|chemii]]}}
{{spis treści}}
{{spis treści}}
'''Ortogonalność''' (z gr. ''ortho'' – prosto, prosty, ''gonia'' – kąt) – uogólnienie pojęcia [[prostopadłość|prostopadłości]]<ref name="epwn">{{Encyklopedia PWN | id = 3951997 | tytuł = ortogonalność | data dostępu = 2021-10-14 }}</ref> znanego z [[geometria euklidesowa|geometrii euklidesowej]] na abstrakcyjne [[przestrzeń (matematyka)|przestrzenie]] z określonym [[iloczyn skalarny|iloczynem skalarnym]], jak np. [[przestrzeń unitarna|przestrzenie unitarne]] (w tym [[przestrzeń Hilberta|przestrzenie Hilberta]]) czy [[przestrzeń ortogonalna|przestrzenie ortogonalne]]. Pojęcie ortogonalności bywa uogólnianie również na [[przestrzeń unormowana|przestrzenie unormowane]] w których nie ma naturalnej struktury iloczynu skalarnego ([[ortogonalność w sensie Pitagorasa]], [[ortogonalność w sensie Jamesa]], [[ortogonalność w sensie Birkhoffa]], [[T-ortogonalność]])<ref>Roman Ger: ''Orthogonalities in linear spaces and difference operators'', Aequationes Mathematicae Volume 60, Number 3, 268-282, [http://www.springerlink.com/content/4ym3ed4368kcdxp5/ DOI:10.1007/s000100050153].</ref>. Często pomijaną informacją jest to, że dwa ortogonalne wektory tworzą ze sobą jedynie kąt prosty.
'''Ortogonalność''' (z gr. ''ortho'' – prosto, prosty, ''gonia'' – kąt) – uogólnienie pojęcia [[prostopadłość|prostopadłości]]<ref name="epwn">{{Encyklopedia PWN | id = 3951997 | tytuł = ortogonalność | data dostępu = 2021-10-14 }}</ref> znanego z [[geometria euklidesowa|geometrii euklidesowej]] na abstrakcyjne [[przestrzeń (matematyka)|przestrzenie]] z określonym [[iloczyn skalarny|iloczynem skalarnym]], jak np. [[przestrzeń unitarna|przestrzenie unitarne]] (w tym [[przestrzeń Hilberta|przestrzenie Hilberta]]) czy [[przestrzeń ortogonalna|przestrzenie ortogonalne]]. Pojęcie ortogonalności bywa uogólnianie również na [[przestrzeń unormowana|przestrzenie unormowane]] w których nie ma naturalnej struktury iloczynu skalarnego ([[ortogonalność w sensie Pitagorasa]], [[ortogonalność w sensie Jamesa]], [[ortogonalność w sensie Birkhoffa]], [[T-ortogonalność]])<ref>Roman Ger: ''Orthogonalities in linear spaces and difference operators'', Aequationes Mathematicae Volume 60, Number 3, 268-282, [http://www.springerlink.com/content/4ym3ed4368kcdxp5/ DOI:10.1007/s000100050153].</ref>.


== Definicja ==
== Definicja ==

Wersja z 07:17, 28 kwi 2022

Ortogonalność (z gr. ortho – prosto, prosty, gonia – kąt) – uogólnienie pojęcia prostopadłości[1] znanego z geometrii euklidesowej na abstrakcyjne przestrzenie z określonym iloczynem skalarnym, jak np. przestrzenie unitarne (w tym przestrzenie Hilberta) czy przestrzenie ortogonalne. Pojęcie ortogonalności bywa uogólnianie również na przestrzenie unormowane w których nie ma naturalnej struktury iloczynu skalarnego (ortogonalność w sensie Pitagorasa, ortogonalność w sensie Jamesa, ortogonalność w sensie Birkhoffa, T-ortogonalność)[2].

Definicja

Elementy i przestrzeni unitarnej z iloczynem skalarnym nazywa się ortogonalnymi, gdy

Relację zapisuje się symbolicznie Podzbiór przestrzeni unitarnej nazywa się układem ortogonalnym, gdy każde dwa różne jego elementy są ortogonalne.

Ortogonalność wektorów w przestrzeni trójwymiarowej

Długość wektora w trójwymiarowej przestrzeni euklidesowej wyraża się wzorem

Jeżeli i są wektorami z przestrzeni trójwymiarowej, to długość wektora wynosi

Liczby są długościami boków trójkąta gdzie

Trójkąt prostokątny o bokach

Wektory są prostopadłe wtedy i tylko wtedy, gdy trójkąt jest prostokątny, a to jest równoważne na mocy prostego i odwrotnego twierdzenia Pitagorasa zależności:

tzn.

Zastosowanie wzoru na kwadrat różnicy do powyższej równości implikuje równość

która upraszcza się do wyrażenia

Lewa strona powyższej równości pokrywa się ze wzorem na iloczyn skalarny wektorów i w przestrzeni trójwymiarowej.

Przykłady

Przestrzenie euklidesowe
 Zobacz też: przestrzeń euklidesowa.

Wektory i na płaszczyźnie są ortogonalne (prostopadłe), ponieważ

Wektor zerowy jest ortogonalny do każdego wektora.

Przestrzenie funkcyjne

Ortogonalność pojawia się również w kontekście przestrzeni funkcyjnych, w których określony jest pewien iloczyn skalarny. Z tego powodu mówi się często o funkcjach ortogonalnych, czy wielomianach ortogonalnych. Klasycznym przykładem jest przestrzeń , tj. przestrzeń wszystkich funkcji, określonych na przedziale o wartościach zespolonych, całkowalnych w drugiej potędze. Iloczyn skalarny elementów i tej przestrzeni definiuje się wzorem

W przypadku, gdy to rodzina funkcji

jest przykładem układu ortogonalnego. Inne przykłady ortogonalnych układów funkcji to np. wielomiany Legendre’a czy wielomiany Czebyszewa.

Zobacz też

Przypisy

  1. ortogonalność, [w:] Encyklopedia PWN [dostęp 2021-10-14].
  2. Roman Ger: Orthogonalities in linear spaces and difference operators, Aequationes Mathematicae Volume 60, Number 3, 268-282, DOI:10.1007/s000100050153.