Zjawisko Halla: Różnice pomiędzy wersjami

Z Wikipedii, wolnej encyklopedii
[wersja przejrzana][wersja nieprzejrzana]
Usunięta treść Dodana treść
Linia 39: Linia 39:


== Efekty towarzyszące ==
== Efekty towarzyszące ==
Przy wyprowadzaniu wzoru na napięcie Halla dla uproszczenia założono, że wszystkie elektrony mają tę samą prędkość. W rzeczywistości prędkości elektronów w ciele stałym mają pewien rozkład, który w przewodniku opisuje [[statystyka Fermiego-Diraca]] (w półprzewodniku można przybliżyć ten rozkład [[Rozkład Maxwella|rozkładem Maxwella-Boltzmanna]]). Oznacza to, że część elektronów ma prędkość większą, a część mniejszą od średniej. Na szybsze, a więc bardziej energetyczne elektrony, większy wpływ ma [[siła Lorentza]] (w węższym znaczeniu – tylko oddziaływanie magnetyczne), na wolniejsze [[Prawo Coulomba|siła Coulomba]]. To powoduje, że szybsze i wolniejsze elektrony są odchylane ku przeciwnym końcom ciała w kierunku poprzecznym do kierunku prądu. Obecność bardziej energetycznych elektronów powoduje wzrost temperatury w tym obszarze ciała. To oznacza powstanie gradientu temperatury i [[dyfuzja|dyfuzję]] elektronów od cieplejszego do chłodniejszego końca. To sprawia, że rzeczywiste napięcie Halla jest mniejsze od wyliczonego. Zjawisko to jest nazywane [[efekt Ettingshausena|efektem Ettingshausena]].
Przy wyprowadzaniu wzoru na napięcie Halla dla uproszczenia założono, że wszystkie elektrony mają tę samą prędkość. W rzeczywistości prędkości elektronów w ciele stałym mają pewien rozkład, który w przewodniku opisuje [[statystyka Fermiego-Diraca]] (w półprzewodniku można przybliżyć ten rozkład [[Rozkład Maxwella|rozkładem Maxwella-Boltzmanna]]). Oznacza to, że część elektronów ma prędkość większą, a część mniejszą od średniej. Najszybsze, a więc bardziej energetyczne elektrony, większy wpływ ma [[siła Lorentza]] (w węższym znaczeniu – tylko oddziaływanie magnetyczne), na wolniejsze [[Prawo Coulomba|siła Coulomba]]. To powoduje, że szybsze i wolniejsze elektrony są odchylane ku przeciwnym końcom ciała w kierunku poprzecznym do kierunku prądu. Obecność bardziej energetycznych elektronów powoduje wzrost temperatury w tym obszarze ciała. To oznacza powstanie gradientu temperatury i [[dyfuzja|dyfuzję]] elektronów od cieplejszego do chłodniejszego końca. To sprawia, że rzeczywiste napięcie Halla jest mniejsze od wyliczonego. Zjawisko to jest nazywane [[efekt Ettingshausena|efektem Ettingshausena]].


== Zastosowanie ==
== Zastosowanie ==

Wersja z 00:32, 10 sty 2016

Efekt Halla
1. Elektrony, 2. Element Halla, 3. Magnesy, 4. Pole magnetyczne, 5. Źródło zasilania

Efekt Hallazjawisko fizyczne polegające na wystąpieniu różnicy potencjałów w przewodniku, w którym płynie prąd elektryczny, gdy przewodnik znajduje się w poprzecznym do płynącego prądu polu magnetycznym. Napięcie to, zwane napięciem Halla, pojawia się między płaszczyznami ograniczającymi przewodnik, prostopadle do płaszczyzny wyznaczanej przez kierunek prądu i wektor indukcji pola magnetycznego. Jest ono spowodowane działaniem siły Lorentza na ładunki poruszające się w polu magnetycznym.

Zjawisko zostało odkryte w 1879 roku przez Edwina H. Halla (wówczas doktoranta).

Wyprowadzenie

Niech przewodnik będzie prostopadłościanem o bokach a, b, c. Jeśli wzdłuż przewodnika (równolegle do a) płynie prąd o natężeniu I (nadając nośnikom prądu prędkość unoszenia ), zaś prostopadle do powierzchni przewodnika (równolegle do c) skierowane jest pole magnetyczne o indukcji , to na nośniki prądu o ładunku q w kierunku b działa siła Lorentza:

odchylając te ładunki do jednej ze ścianek. W ten sposób między tą ścianką a ścianką do niej przeciwną wytwarza się różnica gęstości ładunków, a więc i pole elektryczne o natężeniu , które może być wyrażone przez różnicę potencjałów. Na kolejne nośniki działa też zatem siła kulombowska. Wypadkowa siła jest równa:

W stanie równowagi, kiedy siła Lorentza i kulombowska równoważą się. Co prowadzi do równania:

lub

gdzie:

nkoncentracja nośników,
q – ładunek nośnika prądu (elektrony bądź dziury)
c – grubość płytki, wymiar w kierunku pola magnetycznego,
I – natężenie prądu,
RH – stała zależna od materiału (tzw. stała Halla).
B – wartość indukcji magnetycznej,

Napięcie , powstałe pomiędzy ściankami przewodnika, nazywane jest napięciem Halla.

Stałą Halla wyraża się przeważnie przez m3/C Ω·cm/Gs lub jednostkach pokrewnych.

Detekcja

W materiałach wytwarzających niewielkie napięcie Halla, rzędu 10 μV, do jego pomiaru stosuje się metody pośrednie. Przykładowo, badany materiał umieszcza się w stałym polu magnetycznym i podłącza do źródła prądu zmiennego. Prąd ten, płynący wzdłuż próbki, wywołuje powstanie zmiennego napięcia Halla między brzegami próbki w kierunku poprzecznym. Ma ono taką samą częstotliwość jak prąd podłużny. Napięcie to wzmacnia się wzmacniaczem selektywnym i bada detektorem fazoczułym, który porównuje fazę napięcia Halla z fazą prądu podłużnego i rejestruje jedynie prąd o fazie zgodnej z prądem podłużnym[1].

Zjawiska analogiczne

Pod nazwą efektu Halla kryją się również inne zjawiska o analogicznych skutkach (tj. gromadzenie ładunku na krawędziach próbki), lecz o zasadniczo różnych przyczynach fizycznych. Mówi się zatem o tzw. anomalnym efekcie Halla, w którym napięcie Halla jest proporcjonalne do namagnesowania próbki magnetycznej, przez którą płynie prąd. Znany jest również tzw. spinowy efekt Halla, w którym nie pojawia się elektryczne napięcie Halla, ale na krawędziach próbki akumulują się nośniki o dwóch różnych kierunkach spinu. Mechanizm tego zjawiska nie jest do końca poznany.

Efekty towarzyszące

Przy wyprowadzaniu wzoru na napięcie Halla dla uproszczenia założono, że wszystkie elektrony mają tę samą prędkość. W rzeczywistości prędkości elektronów w ciele stałym mają pewien rozkład, który w przewodniku opisuje statystyka Fermiego-Diraca (w półprzewodniku można przybliżyć ten rozkład rozkładem Maxwella-Boltzmanna). Oznacza to, że część elektronów ma prędkość większą, a część mniejszą od średniej. Najszybsze, a więc bardziej energetyczne elektrony, większy wpływ ma siła Lorentza (w węższym znaczeniu – tylko oddziaływanie magnetyczne), na wolniejsze siła Coulomba. To powoduje, że szybsze i wolniejsze elektrony są odchylane ku przeciwnym końcom ciała w kierunku poprzecznym do kierunku prądu. Obecność bardziej energetycznych elektronów powoduje wzrost temperatury w tym obszarze ciała. To oznacza powstanie gradientu temperatury i dyfuzję elektronów od cieplejszego do chłodniejszego końca. To sprawia, że rzeczywiste napięcie Halla jest mniejsze od wyliczonego. Zjawisko to jest nazywane efektem Ettingshausena.

Zastosowanie

Efekt Halla umożliwia pomiar znaku ładunków poruszających się w przewodniku oraz ich koncentrację.

Dla znanych materiałów pomiar napięcia Halla pozwala określić wartość indukcji pola magnetycznego. Przyrządy wykorzystujące efekt Halla do pomiaru tej indukcji nazywają się hallotronami. Są one powszechnie wykorzystywane m.in. różnych czujnikach, np.: ABS, ESP.

Efekt Halla jest również podstawą działania silnika Halla.

Zobacz też

  1. Metody doświadczalne w fizyce ciała stałego. Praca zbiorowa pod red. Mieczysława Subotowicza. Lublin: Uniwersytet Marii Curie-Skłodowskiej, Wydział Matematyki, Fizyki i Chemii, Zakład Fizyki Doświadczalnej, 1976, s. ?.