Układ współrzędnych kartezjańskich: Różnice pomiędzy wersjami

Z Wikipedii, wolnej encyklopedii
[wersja przejrzana][wersja przejrzana]
Usunięta treść Dodana treść
→‎Ćwiartki i oktanty: przypis EPWN, szablon
Linia 41: Linia 41:
Osie dwuwymiarowego układu kartezjańskiego dzielą płaszczyznę na cztery [[przystawanie (geometria)|przystające]], [[zbiór ograniczony|nieograniczone]] zbiory nazywane '''ćwiartkami'''; [[brzeg (matematyka)|brzeg]] każdej z nich składa się z dwóch półosi<ref>Nie jest to jednak podział na podzbiory rozłączne; takiego podziału na cztery części przystające nie da się dokonać, bowiem początek układu musiałby należeć do jednej tylko części.</ref>. Często numeruje się je od pierwszej do czwartej i oznacza [[rzymski system zapisywania liczb|symbolami rzymskimi]]: I (+,+), II (–,+), III (–,–) oraz IV (+,–), gdzie znaki w nawiasach odpowiadają znakom danej współrzędnej. Przy zwyczajowym rysowaniu osi, numeracja rozpoczyna się od prawej-górnej ćwiartki („północno-wschodniej”) i postępuje przeciwnie do ruchu wskazówek zegara.
Osie dwuwymiarowego układu kartezjańskiego dzielą płaszczyznę na cztery [[przystawanie (geometria)|przystające]], [[zbiór ograniczony|nieograniczone]] zbiory nazywane '''ćwiartkami'''; [[brzeg (matematyka)|brzeg]] każdej z nich składa się z dwóch półosi<ref>Nie jest to jednak podział na podzbiory rozłączne; takiego podziału na cztery części przystające nie da się dokonać, bowiem początek układu musiałby należeć do jednej tylko części.</ref>. Często numeruje się je od pierwszej do czwartej i oznacza [[rzymski system zapisywania liczb|symbolami rzymskimi]]: I (+,+), II (–,+), III (–,–) oraz IV (+,–), gdzie znaki w nawiasach odpowiadają znakom danej współrzędnej. Przy zwyczajowym rysowaniu osi, numeracja rozpoczyna się od prawej-górnej ćwiartki („północno-wschodniej”) i postępuje przeciwnie do ruchu wskazówek zegara.


Podobnie trójwymiarowy układ współrzędnych określa podział przestrzeni na osiem części zwanych '''oktantami''', zgodnie z ośmioma sposobami ułożenia dwóch znaków +,– na trzech miejscach. Oktant, którego wszystkie trzy współrzędne są dodatnie, nazywany bywa ''pierwszym'', jednak nie ma ogólnie przyjętej numeracji pozostałych oktantów. Uogólnienie ćwiartki i oktantu na wyższe wymiary nazywane bywa '''ortantem'''.
Podobnie trójwymiarowy układ współrzędnych określa podział przestrzeni na osiem części zwanych '''oktantami'''<ref name="epwn">{{Encyklopedia PWN | id = 3950621 | tytuł = oktant | data dostępu = 2021-10-03 }}</ref>, zgodnie z ośmioma sposobami ułożenia dwóch znaków +,– na trzech miejscach. Oktant, którego wszystkie trzy współrzędne są dodatnie, nazywany bywa ''pierwszym'', jednak nie ma ogólnie przyjętej numeracji pozostałych oktantów. Uogólnienie ćwiartki i oktantu na wyższe wymiary nazywane bywa '''ortantem'''{{fakt|data=2021-10}}.


== Skrętność przestrzeni trójwymiarowej ==
== Skrętność przestrzeni trójwymiarowej ==

Wersja z 20:38, 3 paź 2021

Dwuwymiarowy układ współrzędnych kartezjańskich

Układ współrzędnych kartezjańskich (prostokątny) – prostoliniowy układ współrzędnych mający dwie prostopadłe osie. Pewne cechy takiego układu ma też znana od czasów starożytnych szachownica oraz pochodzące z XVI wieku odwzorowanie Mercatora.

Pochodzenie nazwy

Nazwa układu pochodzi od nazwiska francuskiego matematyka i filozofa Kartezjusza (René Descartes, franc. przymiotnik cartesien), który wprowadził tę ideę w 1637 w traktacie La Géométrie[1]. Już wcześniej, w 1636 metody prostokątnego układu współrzędnych używał Pierre de Fermat, jednak tego nie opublikował, przez co pozostała nieznana. Kartezjusz opracował układ współrzędnych niezależnie, co wywołało spór o pierwszeństwo z Fermatem. Spór zakończył się ostatecznie pogodzeniem obu uczonych i wzajemnym uznaniem zasług[2].

Definicja

Układem współrzędnych kartezjańskich w przestrzeni n-wymiarowej nazywa się układ współrzędnych, w którym zadane są:

  • punkt zwany początkiem układu współrzędnych, którego wszystkie współrzędne są równe zeru, często oznaczany literą lub cyfrą
  • ciąg n parami prostopadłych osi liczbowych zwanych osiami układu współrzędnych. Dwie pierwsze osie często oznaczane są jako:
    • (pierwsza oś, zwana osią odciętych),
    • (druga, zwana osią rzędnych),

Liczba osi układu współrzędnych wyznacza wymiar przestrzeni.

Współrzędne

Aby wyznaczyć k-tą współrzędną zadanego punktu

  1. Tworzymy rzut prostokątny punktu na k-tą oś, tzn. konstruujemy prostą przechodzącą przez i prostopadłą do k-tej osi, a następnie znajdujemy punkt przecięcia tej prostej z k-tą osią.
  2. Współrzędna tego punktu przecięcia na k-tej osi jest k-tą współrzędną punktu

Trzy pierwsze współrzędne są często oznaczane jako:

  • – historyczna nazwa odcięta, łac. abscissa,
  • – historyczna nazwa rzędna, łac. ordinata,
  • – historyczna nazwa kota, łac. applicata.

Wzory w 2-wymiarowym układzie współrzędnych

  • Współrzędne środka odcinka AB oznaczonego literą C, kiedy

  • odległość punktu A od środka układu współrzędnych dla

  • Długość odcinka AB dla

lub

Ćwiartki i oktanty

Cztery ćwiartki układu współrzędnych kartezjańskich.

Osie dwuwymiarowego układu kartezjańskiego dzielą płaszczyznę na cztery przystające, nieograniczone zbiory nazywane ćwiartkami; brzeg każdej z nich składa się z dwóch półosi[3]. Często numeruje się je od pierwszej do czwartej i oznacza symbolami rzymskimi: I (+,+), II (–,+), III (–,–) oraz IV (+,–), gdzie znaki w nawiasach odpowiadają znakom danej współrzędnej. Przy zwyczajowym rysowaniu osi, numeracja rozpoczyna się od prawej-górnej ćwiartki („północno-wschodniej”) i postępuje przeciwnie do ruchu wskazówek zegara.

Podobnie trójwymiarowy układ współrzędnych określa podział przestrzeni na osiem części zwanych oktantami[4], zgodnie z ośmioma sposobami ułożenia dwóch znaków +,– na trzech miejscach. Oktant, którego wszystkie trzy współrzędne są dodatnie, nazywany bywa pierwszym, jednak nie ma ogólnie przyjętej numeracji pozostałych oktantów. Uogólnienie ćwiartki i oktantu na wyższe wymiary nazywane bywa ortantem[potrzebny przypis].

Skrętność przestrzeni trójwymiarowej

Kartezjański układ współrzędnych w przestrzeni trójwymiarowej może być lewo- lub prawoskrętny. Terminy te są czysto umowne, gdyż nie sposób ściśle zdefiniować, jaki układ jest lewo- czy prawoskrętny, można jednak dla dwóch różnych układów sprawdzić, czy mają tę samą czy przeciwną skrętność.

Intuicyjnie prawoskrętny jest układ, w którym kiedy wnętrze obracającej się prawej dłoni zakreśla łuk od osi do to kciuk ma zwrot zgodny ze zwrotem osi (tzw. reguła prawej dłoni Royberta albo reguła śruby prawoskrętnej). W ten sposób sprawdzamy, czy badany układ ma tę samą skrętność, co układ wyznaczony przez prawą rękę człowieka.

Zobacz też

Przypisy

  1. Discours de la méthode pour bien conduire sa raison, & chercher la verité dans les sciences: plus la dioptrique, les météores, et la géométrie, qui sont des essais de cete méthode. Lejda: Jan Maire, 1637.
  2. Neil Schlager, Josh Lauer (red.), Science and Its Times. Understanding the Social Significance of Scientific Discovery, t. III. 1450-1699, Farmington Hills, MI: Gale Group, 2000, s. 242.
  3. Nie jest to jednak podział na podzbiory rozłączne; takiego podziału na cztery części przystające nie da się dokonać, bowiem początek układu musiałby należeć do jednej tylko części.
  4. oktant, [w:] Encyklopedia PWN [dostęp 2021-10-03].