Inwolucja (matematyka): Różnice pomiędzy wersjami

Z Wikipedii, wolnej encyklopedii
[wersja nieprzejrzana][wersja nieprzejrzana]
Usunięta treść Dodana treść
drobne redakcyjne
Wlod (dyskusja | edycje)
→‎Geometria: odnośnik do literatury
Linia 35: Linia 35:


Złożenia parzystej liczby izometrii zwierciadlanych zachowują orientację przestrzeni euklidesowej, a nieparzystej liczby – zmieniają.
Złożenia parzystej liczby izometrii zwierciadlanych zachowują orientację przestrzeni euklidesowej, a nieparzystej liczby – zmieniają.

Inwolucje są obiektem głębikich badań między innymi w topologii rozmaitości; patrz na przykład <ref>S.López de Medrano, ''Involutions on Manifolds'', Springer-Verlag, 1971.</ref>


==Teoria grup==
==Teoria grup==

Wersja z 00:19, 22 paź 2007

Definicja

Inwolucja – w matematyce to funkcja , która jest funkcją odwrotną do samej siebie. Innymi słowy, dla dowolnego należącego do dziedziny funkcji zachodzi warunek    dla każdego  .

Ogólniej, w teorii kategorii morfizm   nazywamy inwolucją lub morfizmem inwolucyjnym, gdy  .

Własności

  • Każda inwolucja jest bijekcją (każdy morfizm-inwolucja jest izomorfizmem).
  • n-krotne złożenie inwolucji dla parzystych n jest tożsamością:

dla dowolnego z dziedziny .

  • n-krotne złożenie inwolucji dla nieparzystych n jest jest tą samą funkcją:

dla dowolnego z dziedziny .

Podobnie     oraz       dla dowolnego morfizmu inwolucyjnego  .

Przykłady

Geometria

W geometrii euklidesowej inwolucjami są symetrie zwierciadlane, osiowe, środkowe, a także inwersja. Izometrie zwierciadlane zmieniają orietację przestrzeni. Izometria środkowa zmienia orientację nieparzystowymiarowej przestrzeni euklidesowej, ale zachowuje parzystowymiarowej.

Twierdzenie (Bourbaki). Każda izometria n-wymiarowej przestrzeni euklidesowej jest złożeniem co najwyżej n+1 symetrii zwierciadlanych.

Złożenia parzystej liczby izometrii zwierciadlanych zachowują orientację przestrzeni euklidesowej, a nieparzystej liczby – zmieniają.

Inwolucje są obiektem głębikich badań między innymi w topologii rozmaitości; patrz na przykład [1]

Teoria grup

Inwolucją nazywamy element rzędu dwa (czasami dopuszcza się też element rzędu 1 czyli element neutralny).

Pojęcie to bierze się stąd, że zbiór wszystkich bijekcji ustalonego zbioru tworzy grupę. W grupie tej inwolucje to elementy rzędu 2 i 1.

  • Permutacja jest inwolucją wtedy i tylko wtedy, gdy w jej rozkładzie na cykle występują tylko cykle długości 1 i 2. W szczególności, transpozycja dwóch elementów jest inwolucją. Każda permutacja zbioru n-elementowego (n - liczba naturalna) jest złożeniem co najwyżej n-1 transpozycji, a więc inwolucji.
  1. S.López de Medrano, Involutions on Manifolds, Springer-Verlag, 1971.
  2. Bourbaki. Groupes et Algèbres de Lie, Hermann, Paris, Rozdział 4.1.

Zobacz też