Twierdzenie Koebego-Bieberbacha

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj

Twierdzenie Koebego-Bieberbacha (czasami nazywane też twierdzeniem Koebego 1/4) - twierdzenie analizy zespolonej, które zostało udowodnione przez Paula Koebe'go w 1907[1] oraz doprecyzowane przez Ludwiga Bieberbacha w pracy z roku 1916[2] (Bieberbach podał dokładnie ograniczenie górne stałej M w wypowiedzi twierdzenia poniżej).

Twierdzenie[edytuj]

Jeśli jest różnowartościową funkcją analityczną na kole jednostkowym płaszczyzny zespolonej, to obraz funkcji zawiera koło o środku w punkcie i promieniu równym , gdzie . Oszacowania tego nie można poprawić, co można wykazać na przykładzie funkcji

.

Zobacz też[edytuj]

Przypisy

  1. P. Koebe, Über die Uniformisierung beliebiger analytischer Kurve, Nachr. K. Ges. Wissenschaft. Göttingen Math. Phys. Kl., 2 (1907) ss. 191–210.
  2. L. Bieberbach, Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, Sitzungsber. Preuss. Akad. Wiss. Phys-Math. Kl. (1916) ss. 940–955.