Twierdzenie Kopernika

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania
Twierdzenie Kopernika – animacja
Ilustracja twierdzenia Kopernika – XIII-wieczny szkic Nasir al-Dina Tusiego

Twierdzenie Kopernika – twierdzenie geometrii płaskiej; mówi ono, że jeśli wewnątrz okręgu toczy się bez poślizgu okrąg o promieniu dwa razy mniejszym, to dowolny, lecz ustalony punkt małego okręgu porusza się prostoliniowo po średnicy okręgu większego. Innymi słowy hipocykloida, w której mniejszy okrąg jest mniejszy dwukrotnie, jest odcinkiem.

Historia[edytuj | edytuj kod]

Twierdzenie to pojawiło się w literaturze co najmniej trzykrotnie:

  • około 461 r. n.e. Proklos sformułował je w swoim Komentarzu do pierwszej księgi Elementów Euklidesa[1];
  • następnie w 1254 r. ponownie opublikował je perski astronom i matematyk Nasir ad-Din Tusi[2] (stąd twierdzenie to jest szerzej znane po angielsku jako Tusi-couple);
  • w 1543 r. w dziele De revolutionibus orbium coelestium polskiego polihistora Mikołaja Kopernika. Kopernik sformułował to twierdzenie, prawdopodobnie nie wiedząc, że zostało ono co najmniej dwukrotnie opisane i opublikowane wcześniej.

Zobacz też[edytuj | edytuj kod]

Przypisy[edytuj | edytuj kod]

  1. I. N. Veselovsky, "Copernicus and Nasir al-Din al-Tusi", Journal for the History of Astronomy, 4 (1973): 128-30
  2. Patrz reprodukcja manuskryptów i komentarz w: Willy Hartner. Copernicus, the Man, the Work, and its History. „Proceedings of American Philosophical Society”. Vol. 117 (No. 6, 1973), s. s. 422. American Philosophical Society. ISBN 1-4223-7120-4, ISBN 978-1-4223-7120-6 (ang.). [dostęp 29 grudnia 2008]. 

Bibliografia[edytuj | edytuj kod]