Przejdź do zawartości

Twierdzenie o dwusiecznej kąta wewnętrznego w trójkącie

Z Wikipedii, wolnej encyklopedii

Twierdzenie o dwusiecznej kąta wewnętrznego w trójkącie, twierdzenie o rzucie boku w trójkącie w kierunku dwusiecznej – twierdzenie w geometrii euklidesowej na płaszczyźnie.

Dwusieczna kąta wewnętrznego w trójkącie dzieli przeciwległy bok proporcjonalnie do długości pozostałych boków[1].

W oznaczeniach przyjętych na rysunku treść twierdzenia wyraża proporcja:


Dowód

[edytuj | edytuj kod]

Sposób 1.

[edytuj | edytuj kod]

Z punktu prowadzi się półprostą prostopadłą do dwusiecznej w punkcie przecina ona również przedłużenie boku w pewnym punkcie Zauważyć trzeba, że i

Następnie należy poprowadzić przez prostą równoległą do boku – przecina ona prostą w pewnym punkcie Trójkąty i przystające, a więc Z podobieństwa trójkątów i wynika, że:

czyli

Sposób 2.

[edytuj | edytuj kod]

Niech:

Na mocy twierdzenia sinusów zastosowanego do trójkątów i prawdziwa jest równość:

a także

Po podzieleniu stronami powyższych równości otrzymuje się tezę:

Sposób 3

[edytuj | edytuj kod]

Stosunek pól trójkątów o równej wysokości równy jest stosunkowi długości ich podstaw, czyli Lewą stronę można zapisać jako:

Stąd co należało wykazać.

Uogólnienie

[edytuj | edytuj kod]

Uogólnione twierdzenie o dwusiecznej mówi, że jeżeli leży na prostej i punkt na niej nie leży, to[1]:

Dowód uogólnienia

[edytuj | edytuj kod]

Spodki wysokości w trójkątach i z odpowiednio wierzchołków i oznaczone są odpowiednio jako i Wtedy:

Ponadto zarówno kąt jak i są proste, a kąty i są wierzchołkowe, jeśli leży na odcinku a tożsame w przeciwnym wypadku, więc trójkąty i są podobne, a więc:

co kończy dowód.

Zobacz też

[edytuj | edytuj kod]

Przypisy

[edytuj | edytuj kod]
  1. a b publikacja w otwartym dostępie – możesz ją przeczytać Dwusieczna kąta. Podstawowe twierdzenia, Wrocławski Portal Matematyczny, matematyka.wroc.pl, 17 września 2018 [dostęp 2024-10-06].

Linki zewnętrzne

[edytuj | edytuj kod]