Układ odniesienia

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacji, wyszukiwania
Mechanika klasyczna
Rownia tarcie.svg
\mathbf F = \frac{\mathrm d\mathbf p}{\mathrm dt}
II zasada dynamiki Newtona
Wprowadzenie
Historia
Aparat matematyczny
Koncepcje podstawowe
Przestrzeń · Czas · Prędkość · Szybkość · Masa · Przyspieszenie · Grawitacja · Siła · Popęd · Moment siły / Moment / Para sił · Pęd · Moment pędu · Bezwładność · Moment bezwładności · Układ odniesienia · Energia · Energia kinetyczna · Energia potencjalna · Praca · Praca wirtualna · Moc · Zasada d’Alemberta
Znani uczeni
Isaac Newton · Jeremiah Horrocks · Leonhard Euler · Jean le Rond d’Alembert · Alexis Clairaut · Joseph Louis Lagrange · Pierre Simon de Laplace · Henri Poincaré · Pierre Louis Maupertuis · William Rowan Hamilton · Siméon Denis Poisson

Układ odniesienia (fizyka) – punkt lub układ punktów w przestrzeni, względem którego określa się położenie lub zmianę położenia (ruch) danego ciała. Wybrany punkt często wskazuje się poprzez wskazanie ciała, z którym związany jest układ współrzędnych.

Wybór układu odniesienia jest koniecznym warunkiem opisu ruchu lub spoczynku. Układ odniesienia można wybrać dowolnie, tak, by wygodnie opisać ruch.

Określanie ruchu ciała względem układu odniesienia, czyli ruchu wobec innego ciała, nazywany względnością ruchu.

Z układem odniesienia związuje się zazwyczaj układ współrzędnych, z którym bywa czasami mylony.

Szczególnie ważne przykłady układów odniesienia
  • układ laboratoryjny – układ, w którym laboratorium jest nieruchome,
  • układ środka masy – ruch opisujemy tak jakby środek masy opisywanych ciał spoczywał,
  • Ziemia – w pewnych sytuacjach, gdy obszar, w którym porusza się opisywane ciało jest wystarczająco mały, można założyć, że Ziemia jest płaska i nieruchoma, np. lot pocisku karabinowego, upadek kamienia, jadący samochód.

Zobacz też[edytuj | edytuj kod]