Układ współrzędnych biegunowych (układ współrzędnych polarnych) – układ współrzędnych na płaszczyźnie wyznaczony przez pewien punkt zwany biegunem oraz półprostą o początku w punkcie zwaną osią biegunową.
W 1661 James Gregory, szkocki matematyk, użył podobnej metody.
Isaac Newton[3] dyskutował różne układy współrzędnych, m.in. używał układu biegunowego.
Jakoba Bernoulliego używał tego układu w badaniach krzywizny pewnych krzywych. Uważa się go za twórcę biegunowego układu współrzędnych we współczesnej formie.
zmiennych Stopniem krzywej algebraicznej – to maksymalny stopień wszystkich składników wielomianu postaci
Równaniami biegunowymi krzywych nazywa się równania krzywych algebraicznych zapisane w układzie biegunowym. Dla wielu krzywych równania te cechuje szczególna symetria lub prostota.
Okrąg o środku w punkcie i promieniu jest opisany przez równanie
Okrąg jest krzywą algebraiczną 2-go stopnia. Gdy środek znajduje się w biegunie układu współrzędnych, to równanie okręgu przybiera szczególnie prostą postać
Krzywa znana pod nazwą róży lub róży polarnej opisana jest przez równanie
gdzie jest dowolną stałą, jest parametrem wyznaczającym długość „płatków” róży, a jest parametrem wyznaczającym liczbę i formę „płatków” róży.
Jeśli jest nieparzystąliczbą całkowitą, to róża będzie miała płatków, a jeśli jest parzystą liczbą całkowitą, to róża będzie miała płatków. Dla innych wartości kształt krzywej może być bardziej skomplikowany.
Parametry w powyższym równaniu odpowiedzialne są za kształt spirali: zmiana spowoduje obrócenie krzywej, a wartość wyznacza odległość pomiędzy ramionami.
Elipsa z zaznaczonym parametrem („semilatus rectum” – zielony kolor)
Wszystkie krzywe stożkowe można opisać w układzie współrzędnych biegunowych prostym równaniem (gdy jedno z ognisk pokrywa się z biegunem układu, a drugie ognisko leży na osi biegunowej ):
– parametr krzywej równy połowie długości cięciwy, która przechodzi przez jej ognisko i jest równoległa do jej kierownicy (por. rysunek – nosi on łacińską nazwę semilatus rectum oznaczającego połowę odcinka).
Pole powierzchni ograniczonej wykresem funkcji[edytuj | edytuj kod]
W układzie kartezjańskim powierzchnię pod wykresem funkcji można podzielić na infinitezymalne prostokąty o wymiarach gdzie jest wartością funkcji dla argumentu zaś jest różniczką argumentu. Analogicznie można postąpić w układzie współrzędnych biegunowych, dzieląc powierzchnię pod wykresem funkcji na trójkąty równoramienne, których wierzchołki zawarte pomiędzy ich ramionami znajdują się w biegunie układu współrzędnych, drugie są częścią wykresu, zaś trzecie znajdują się obok drugich i jednocześnie w tej samej odległości od bieguna, co te drugie, przy czym długość obu ramion jest równa gdzie jest wartością funkcji dla argumentu zaś kąt zawarty pomiędzy ramionami wynosi gdzie jest różniczką tegoż argumentu.
Aby obliczyć różniczkę powierzchni skorzystamy z twierdzenia, iż pole trójkąta można wyrazić jako iloczyn połowy długości jego ramion i sinusa kąta zawartego między nimi:
Ponieważ otrzymujemy:
Tak więc pole powierzchni ograniczonej wykresem funkcji wyraża się wzorem:
W układzie współrzędnych biegunowych, powierzchnię wykresu funkcji można podzielić na trójkąty, których wierzchołki zawarte pomiędzy ich ramionami znajdują się w biegunie, zaś 2 pozostałe: i są częścią wykresu i znajdują się obok siebie, przy czym długość pierwszego ramienia wynosi drugiego dla argumentu długość podstawy jest różniczką naszego łuku, a więc oznaczona jako zaś kąt zawarty pomiędzy ramionami wynosi gdzie jest różniczką tegoż argumentu. Na ramieniu umieszczamy punkt który dzieli to ramię w ten sposób, że zaś W ten sposób podzieliliśmy trójkąt na 2 mniejsze: równoramienny (o podstawie ) i Kąt oznaczmy jako zaś kąt – jako Kąty i znajdują się w trójkącie równoramiennym, tak więc suma ich wszystkich jest równa
Ponieważ więc:
Kąty i są względem siebie przyległe, tak więc ich suma jest równa
Ponieważ więc:
Skoro więc kąt znajduje się w trójkącie to trójkąt ten można uznać za prostokątny, a skoro tworzą go boki i to muszą one spełniać twierdzenie Pitagorasa:
(2) w układzie współrzędnych biegunowych (tzw. postać trygonometryczna liczby zespolonej)
gdzie: – współrzędna radialna nazywana tu modułem liczby – współrzędna kątowa nazywana jej argumentem. Postać trygonometryczną liczby zespolonej można przekształcić do postaci wykładniczej
Użyteczność postaci trygonometrycznej i wykładniczej liczb zespolonych wynika m.in. z faktu, że mnożenie, dzielenie i potęgowanie liczb w tych postaciach jest znacznie proste, niż w postaci kartezjańskiej (por. działania na liczbach zespolonych), tj.
↑Granino A. Korn, Theresa M. Korn: Mathematical Handbook for Scientists and Engineers. Wyd. 2. Mineola, New York: Dover Publications, 2000, s. 35. ISBN 0-486-41147-8.