Zbiór rekurencyjny

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj

Zbiór rekurencyjnypodzbiór (zbioru liczb naturalnych) dla którego można skonstruować algorytm, który w skończonym czasie rozstrzyga czy dana liczba należy do zbioru czy też nie. Inne nazwy tego pojęcia to zbiór obliczalny oraz zbiór rozstrzygalny.

Własność ogólniejsza (słabsza) to bycie zbiorem rekurencyjnie przeliczalnym.

Definicje[edytuj]

  • Zbiór jest zbiorem rekurencyjnym jeśli istnieje funkcja rekurencyjna taka, że dla każdego
wtedy i tylko wtedy, gdy
  • Zbiór jest zbiorem rekurencyjnie przeliczalnym jeśli istnieje funkcja rekurencyjna taka, że .

Przykłady[edytuj]

Następujące zbiory są rekurencyjne:

Podstawowe własności[edytuj]

  • Każdy zbiór rekurencyjny jest też zbiorem rekurencyjnie przeliczalnym.
  • Nieskończony zbiór rekurencyjnie przeliczalny musi zawierać nieskończony podzbiór rekurencyjny.
  • Istnieją zbiory rekurencyjnie przeliczalne które nie są rekurencyjne.
  • Zbiór jest rekurencyjny wtedy i tylko wtedy, gdy zarówno jak i są rekurencyjnie przeliczalne.
  • Jeśli zbiory są rekurencyjne, to także zbiory oraz są rekurencyjne.