Podobieństwo

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj
Ten artykuł dotyczy geometrii. Zobacz też: podobieństwo macierzy.

Podobieństwoprzekształcenie geometryczne zachowujące stosunek odległości punktów. Kształt figur jest zachowany, ale ich wielkości mogą się różnić. Dwie figury geometryczne, dla których istnieje podobieństwo przeprowadzające jedną figurę na drugą, nazywają się figurami podobnymi.

Mianem podobieństwo określa się też relację równoważności między figurami podobnymi.

Definicja[edytuj]

Podobieństwo to przekształcenie przestrzeni metrycznej na siebie spełniające dla dowolnych dwóch punktów i pewnej liczby zależność:

.

gdzie punkty Parser nie mógł rozpoznać (MathML z przejściem w SVG lub PNG (zalecane dla nowoczesnych przeglądarek i narzędzi zwiększenia dostępności): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „/mathoid/local/v1/”:): {\displaystyle M', N'}obrazami punktów odpowiednio , a – metryką (odległością) dwóch dowolnych punktów zbioru .

Liczbę nazywa się skalą bądź stosunkiem podobieństwa.

Gdy , podobieństwo jest izometrią.

W szczególności może być prostą, płaszczyzną lub przestrzenią trójwymiarową ze zwykłą odległością euklidesową.

Podobieństwem nazywa się również relację równoważności zdefiniowaną następująco:

dwie figury są podobne wtedy i tylko wtedy, gdy istnieje podobieństwo przekształcające jedną figurę na drugą.

Często fakt podobieństwa figur i oznacza się symbolicznie jako .

Przykłady[edytuj]

Figury podobne zaznaczono tym samym kolorem

Figurami podobnymi są dowolne dwa odcinki, dwa okręgi, koła, sfery, kule, wielokąty foremne o tej samej liczbie boków, wielościany foremne o tej samej liczbie ścian, parabole.

Własności[edytuj]

  • Złożenie podobieństw o skalach jest podobieństwem o skali
  • Przekształcenie odwrotne do podobieństwa o skali jest podobieństwem o skali .
  • Dowolne podobieństwo przestrzeni euklidesowej jest złożeniem izometrii i jednokładności o skali równej skali podobieństwa.
  • Dowolne podobieństwo niebędące izometrią ma dokładnie jeden punkt stały przekształcenia.

Z definicji oraz powyższych własności wynika, że w figurach podobnych w przestrzeniach euklidesowych:

  • stosunek długości odpowiadających sobie odcinków jest równy skali podobieństwa,
  • odpowiadające sobie kąty są przystające,
  • stosunek pól figur płaskich jest równy kwadratowi skali podobieństwa,
  • stosunek objętości figur przestrzennych jest równy sześcianowi skali podobieństwa.

Podobieństwa tworzą grupę przekształceń geometrycznych.

Zobacz też[edytuj]