Ten artykuł od 2014-04 wymaga zweryfikowania podanych informacji.
Należy podać wiarygodne źródła, najlepiej w formie przypisów bibliograficznych. Część lub nawet wszystkie informacje w artykule mogą być nieprawdziwe. Jako pozbawione źródeł mogą zostać zakwestionowane i usunięte. Dokładniejsze informacje o tym, co należy poprawić, być może znajdują się w dyskusji tego artykułu. Po wyeliminowaniu niedoskonałości należy usunąć szablon {{Dopracować}} z tego artykułu.
Oryginalnie sformułowana jako funkcja powyższych dwóch zmiennych:
gdzie:
– nakład kapitału,
– nakład pracy potrzebny do wytworzenia jednostek produktu,
– parametr skalujący.
Funkcja zachowuje zasadę malejących przychodów – każda kolejna jednostka jednego z zasobów bez wzrostu zasobu drugiego skutkuje mniejszym przyrostem produkcji.
W klasycznej funkcji Cobba-Douglasa [a], co skutkuje brakiem efektów skali (wzrost i o 100% spowoduje wzrost także o 100%). Założenie to jest postulatem części makroekonomistów, argumentujących, że z jednej strony w całej gospodarce nie ma niekorzyści skali, bo zakłady pracy można po prostu kopiować, z drugiej jednak strony istnieje wiele zakładów pracy, które osiągnęły już optymalną wielkość.
Zdjęcie ostatniego założenia daje funkcję typu Cobba-Douglasa. W przypadku mamy korzyści skali, w odwrotnym przypadku są ujemne skutki skali.
W uogólnieniu funkcja Cobba-Douglasa – to funkcja wielu zmiennych wyrażająca się wzorem: