Postulat Bertranda
Wygląd
Postulat Bertranda (twierdzenie Czebyszewa, twierdzenie Bertranda-Czebyszewa) – twierdzenie w teorii liczb.
Twierdzenie
[edytuj | edytuj kod]Dla każdej liczby naturalnej większej lub równej istnieje przynajmniej jedna liczba pierwsza większa od i mniejsza lub równa
lub
Własności
[edytuj | edytuj kod]Udowodniono również, że
Dla dowolnej liczby po prawej stronie nierówności istnieje „odpowiednia wartość”, którą można wpisać pod kwantyfikatorem.
Postulat Bertranda
[edytuj | edytuj kod]W 1845 roku Joseph Bertrand sformułował hipotezę, tzw. postulat Bertranda, że jeśli jest liczbą całkowitą, to istnieje liczba pierwsza taka, że [1]. Powyższe twierdzenie jest słabszą wersją tej hipotezy.
Bertrand sprawdził swój postulat dla wszystkich liczb całkowitych z przedziału W 1850 roku prawdziwości postulatu dowiódł Pafnutij Czebyszew.
Zobacz też
[edytuj | edytuj kod]Przypisy
[edytuj | edytuj kod]- ↑ Edward Kofler, Z dziejów matematyki, Warszawa: Wiedza Powszechna, 1956, s. 66 .