Zdarzenia losowe niezależne: Różnice pomiędzy wersjami

Z Wikipedii, wolnej encyklopedii
[wersja przejrzana][wersja przejrzana]
Usunięta treść Dodana treść
m kat.
m Przypis stwierdzający prawdę, ale w miejscu kompletnie bezsensownym. Czytelnik może dotrzeć do tej "prawdy" klikając np. na przestrzeń probabilistyczna
Linia 1: Linia 1:
'''Niezależność zdarzeń''' - [[Zdarzenie losowe (teoria prawdopodobieństwa)|zdarzenia]]<ref>Elementy σ-ciała <math>\scriptstyle{\mathcal{A}}</math> nazywamy zdarzeniami.</ref> <math>A, B</math> na pewnej ustalonej [[przestrzeń probabilistyczna|przestrzeni probabilistycznej]] <math>(\Omega, \mathcal{A}, P)</math> nazywane są zdarzeniami '''niezależnymi''', gdy
'''Niezależność zdarzeń''' - [[Zdarzenie losowe (teoria prawdopodobieństwa)|zdarzenia]] <math>A, B</math> na pewnej ustalonej [[przestrzeń probabilistyczna|przestrzeni probabilistycznej]] <math>(\Omega, \mathcal{A}, P)</math> nazywane są zdarzeniami '''niezależnymi''', gdy
: <math>P(A\cap B)=P(A)\cdot P(B)</math>.
: <math>P(A\cap B)=P(A)\cdot P(B)</math>.
Niezależność można definiować także, dla większej liczby zdarzeń. I tak, jeżeli <math>A_1, \ldots, A_m\in \mathcal{A}</math>, to mówimy, że są one '''niezależne''', gdy dla każdego ściśle rosnącego ciągu <math>(i_1, \ldots, i_k)</math> o wyrazach ze zbioru <math>\{1,\ldots, m\}</math> spełniony jest warunek
Niezależność można definiować także, dla większej liczby zdarzeń. I tak, jeżeli <math>A_1, \ldots, A_m\in \mathcal{A}</math>, to mówimy, że są one '''niezależne''', gdy dla każdego ściśle rosnącego ciągu <math>(i_1, \ldots, i_k)</math> o wyrazach ze zbioru <math>\{1,\ldots, m\}</math> spełniony jest warunek
Linia 27: Linia 27:
* [[zależność zmiennych losowych]]
* [[zależność zmiennych losowych]]


{{przypisy}}


== Bibliografia ==
== Bibliografia ==

Wersja z 21:24, 11 lis 2009

Niezależność zdarzeń - zdarzenia na pewnej ustalonej przestrzeni probabilistycznej nazywane są zdarzeniami niezależnymi, gdy

.

Niezależność można definiować także, dla większej liczby zdarzeń. I tak, jeżeli , to mówimy, że są one niezależne, gdy dla każdego ściśle rosnącego ciągu o wyrazach ze zbioru spełniony jest warunek

.

Definicję niezależności można rozszerzyć na nieskończony układ zdarzeń. Dokładniej, mówimy, że zdarzenia są niezależne, gdy dla każdej liczby naturalnej n zdarzenia są niezależne.

Własności

  • Z definicji wynika, że dwa zdarzenia rozłączne są niezależne wtedy i tylko wtedy, gdy przynajmniej jedno z nich ma prawdopodobieństwo zerowe.
  • Gdy zdarzenia są niezależne, to zdarzenia do nich przeciwne też są niezależne oraz:
.

Por. prawa de Morgana.

Niezależność σ-ciał

σ-ciała , gdzie dla nazywamy niezależnymi, gdy dla dowolnych

.

Jeżeli , to przez rozumiemy σ-ciało generowane przez zdarzenie , tzn. najmniejsze σ-ciało zawierające zbiór . Dokładniej, dla

.

Używając tych definicji, niezależność skończonej liczby zdarzeń można scharakteryzować w następujący sposób: zdarzenia są niezależne wtedy i tylko wtedy, gdy σ-ciała są niezależne.

Zobacz też


Bibliografia

  1. Jacek Jakubowski, Rafał Sztencel: Wstęp do teorii prawdopodobieństwa. Warszawa: SCRIPT, 2004, s. 43-47.