Przejdź do zawartości

Wzór Breita-Wignera

Z Wikipedii, wolnej encyklopedii
Rozkład Breita-Wignera

Wzór Breita-Wignera, rozkład Breita-Wignera – wzór ciągłego rozkładu zmiennej losowej wyrażany wzorem:

Powyższy rozkład przedstawia zależność od energii maksimum rozkładu wypada w punkcie a szerokość połówkowa rozkładu wynosi

Wzór Breita-Wignera znajduje zastosowanie do opisu krzywych rezonansowych, np. w fizyce cząstek elementarnych, albo oscylatorze harmonicznym. W optyce bywa również nazywany wzorem Lorentza, a w rachunku prawdopodobieństwa rozkładem Cauchy’ego.

Typowa krzywa rezonansowa opisuje reakcję układu liniowego na sinusoidalnie zmieniającą się siłę. Krzywa ta jest optycznie podobna do, również bardzo ważnej w fizyce, krzywej Gaussa – szczególnie w środkowym przebiegu. Różnice pojawiają się na skrajach, gdzie wykres krzywej rezonansowej opada o wiele wolniej.

Zastosowanie w fizyce

[edytuj | edytuj kod]

Jednocząstkowe funkcje korelacji

[edytuj | edytuj kod]

W kwantowej mechanice statystycznej do opisu układów wielu ciał używa się formalizmu funkcji Greena (funkcji korelacji). W przypadku idealnej kwazicząstki fermionowej transformata Fouriera względem zmiennych przestrzennych i czasowych retardowanej funkcji Greena (czyli funkcja Greena wyrażona w zależności od pędu, bądź kwazipędu oraz energii ) przyjmuje zwykle postać lorencjanu

Unormowanie funkcji zależy od przyjętej konwencji. Czynnik ma interpretację odwrotności czasu życia kwazicząstki.

Nazwa wzoru

[edytuj | edytuj kod]

Nazwa wzoru pochodzi od nazwisk Gregory Breita i Eugene Wignera.

Linki zewnętrzne

[edytuj | edytuj kod]