Ciało wyrażeń wymiernych
Wygląd
Ciało wyrażeń wymiernych[1] (ciało funkcji wymiernych[2]) – ciało ułamków całkowitego pierścienia wielomianów[1][2][3][4][5][6].
Niech będzie dana dziedzina całkowitości Pierścień wielomianów również stanowi dziedzinę całkowitości[1]. Można zatem dla tego pierścienia wielomianów skonstruować ciało ułamków, zwane ciałem wyrażeń wymiernych[1].
Elementy ciała wyrażeń wymiernych są postaci gdzie jest wielomianem, a jest wielomianem niezerowym[1]. Elementy te nazywane są wyrażeniami wymiernymi[1].
Przypisy
[edytuj | edytuj kod]- ↑ a b c d e f Bolesław Gleichgewicht, Algebra, Oficyna Wydawnicza GiS, Wrocław 2004, ISBN 978-83-89020-35-2; s. 336.
- ↑ a b Jerzy Rutkowski, Algebra abstrakcyjna w zadaniach, Wydawnictwo Naukowe PWN, Warszawa 2006, ISBN 978-83-01-14388-6, s. 195, Definicja 133.
- ↑ Andrzej Białynicki-Birula, Algebra, Warszawa: Wydawnictwo Naukowe PWN, 2009, s. 172, ISBN 978-83-01-15817-0, OCLC 833425330 .
- ↑ Andrzej Białynicki-Birula, Algebra, Wydawnictwo Naukowe PWN, Warszawa 2009, ISBN 978-83-01-15817-0, s. 175, Przykład.
- ↑ Eric W. Weisstein , Field of Fractions, [w:] MathWorld, Wolfram Research [dostęp 2020-12-13] (ang.).
- ↑ Pierre Antoine Grillet, Abstract algebra, 2007, s. 124.