Twierdzenie o wykresie domkniętym
Wygląd
Twierdzenie o wykresie domkniętym – jedno z podstawowych twierdzeń klasycznej analizy funkcjonalnej, charakteryzujące ciągłe przekształcenia liniowe między F-przestrzeniami, a więc w szczególności między przestrzeniami Banacha.
Twierdzenie
[edytuj | edytuj kod]Niech oraz będą F-przestrzeniami. Jeżeli operator liniowy ma domknięty wykres[1], to jest on ciągły.
Uwagi o dowodzie
[edytuj | edytuj kod]Dowód twierdzenia o wykresie domkniętym można przeprowadzić w oparciu o inne ważne twierdzenie analizy funkcjonalnej – twierdzenie o operatorze odwrotnym. Główna idea tego dowodu polega na skonstruowaniu odwzorowania liniowego, ciągłego i odwracalnego, dla którego odwrotne byłoby wyjściowym odwzorowaniem.
Przypisy
[edytuj | edytuj kod]- ↑ Tzn. zbiór jest zbiorem domkniętym w topologii Tichonowa przestrzeni
Bibliografia
[edytuj | edytuj kod]- Walter Rudin: Analiza funkcjonalna. Warszawa: PWN, 2001.