Paradoksy Zenona z Elei

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacji, wyszukiwania

Paradoksy Zenona z Elei – zbiór kilku paradoksów pochodzących od greckiego filozofa, Zenona z Elei. Są to paradoksy, które łączy ukazanie trudności w rozumieniu czasu i przestrzeni jako wielkości ciągłych, które można w związku z tym dzielić w nieskończoność. Oprócz znaczenia czysto filozoficznego, paradoksy te mają też znaczenie matematyczne i fizyczne.

Paradoksy ruchu[edytuj | edytuj kod]

Miały na celu udowodnienie, że ruch w świecie, który postrzegamy, jest jedynie złudzeniem, które nie jest możliwe w rzeczywistości. Cztery z nich przekazał Arystoteles w swojej Fizyce[1].

Dychotomia[edytuj | edytuj kod]

Sprinter ma do przebiegnięcia skończony dystans. Zanim jednak pokona całą odległość, musi najpierw dobiec do 1/2 długości, ale zanim dobiegnie do 1/2, musi najpierw dobiec do 1/4, ale zanim dobiegnie do 1/4, musi najpierw dobiec do 1/8, i tak w nieskończoność. Wynika z tego, że biegacz ma do przebycia nieskończoną liczbę odcinków o skończonej długości. Ponieważ nie da się pokonać nieskończonej liczby odcinków w skończonym czasie, biegacz nigdy nie ukończy biegu.

Co więcej, biegacz nie może nawet zacząć biegu, bo ten sam paradoks stosuje się również do dystansu dowolnie zmniejszonego: tak samo, jak nie da się (według powyższego rozumowania) dobiec na dystans 100 m, nie da się również na dystans jednego metra ani na dystans jednego milimetra.

\sum_{n=1}^\infty \frac{1}{2^n} = \frac{1}{2}+ \frac{1}{4}+ \frac{1}{8} + \dots + \frac{1}{2^n} + \dots.

Achilles i żółw[2][edytuj | edytuj kod]

Achilles i żółw stają na linii startu wyścigu na dowolny, skończony dystans. Achilles potrafi biegać 2 razy szybciej od żółwia i dlatego na starcie pozwala oddalić się żółwiowi o 1/2 całego dystansu. Achilles, jako biegnący 2 razy szybciej od żółwia, dobiegnie do 1/2 dystansu w momencie, gdy żółw dobiegnie do 3/4 dystansu. W momencie gdy Achilles przebiegnie 3/4 dystansu, żółw znowu mu "ucieknie" pokonując 7/8 dystansu. Gdy Achilles dotrze w to miejsce, żółw znowu będzie od niego o 1/16 dystansu dalej, i tak w nieskończoność. Wniosek: Achilles nigdy nie dogoni żółwia, mimo że biegnie od niego dwa razy szybciej, gdyż zawsze będzie dzieliła ich zmniejszająca się odległość.

Strzała[edytuj | edytuj kod]

Załóżmy, że wystrzelona z łuku strzała pokonała określony dowolny odcinek drogi. Można więc powiedzieć, że w momencie wystrzelenia znajdowała się ona na początku tej trasy, a po dotarciu do celu – na końcu. Pytanie jednak, gdzie przebywała w trakcie pokonywania tej drogi. Można odpowiedzieć, że w 1/4 czasu pokonywania tego odcinka musiała być niewątpliwie w 1/4 odcinka. Gdy zadamy pytanie, gdzie była po 1/2 czasu lotu, znowu można odpowiedzieć, że w 1/2 odcinka. Po 3/4 czasu – w 3/4 odcinka, i tak dalej w nieskończoność. Możemy sobie wyobrażać dowolną chwilę lotu, w którym strzała znajdowała się w jakimś konkretnym punkcie, w konkretnej odległości od łucznika. Czyli możemy powiedzieć, że skoro w każdej chwili znajdowała się w jakimś konkretnym punkcie, więc w każdej chwili była w spoczynku. Niemożliwe jest zatem, aby w każdej chwili czasu strzała pozostawała w spoczynku i poruszała się jednocześnie.

Stadion[edytuj | edytuj kod]

Rozważmy wyścig rydwanów. Szybkość, z jaką rydwany poruszają się, jest jednocześnie taka i inna, mniejsza i większa, w zależności od tego, względem jakich innych przedmiotów (rydwanów) jest rozważana. Jeśli zaś ruch dokonuje się z szybkością, która jest jednocześnie "taka i nie taka", to jest sprzeczny i nie może istnieć.

Szkic poglądowy:

AAAA

BBBB→

←CCCC

Szereg rydwanów A stoi, szeregi B i C poruszają się różnymi torami z jednakową szybkością w przeciwne strony. Względna szybkość, z którą mijają się B i C, jest dwukrotnie większa od tej, z jaką każdy z nich mija A.

Dawne próby rozwiązania paradoksów[edytuj | edytuj kod]

  • dowodzono, iż w świecie rzeczywistym nie można dzielić odcinków w nieskończoność, a także, że wszystkie zjawiska zachodzące w nim są ciągłe, a nie punktowe, jak w ujęciu Zenona[2]
  • matematyk Giovanni Benedetti (1530-1590) twierdził, iż "zatrzymywanie" obiektów w ich ruchu to dostrzeganie jedynie części zjawiska, bowiem między statycznymi obrazami znajdują się nieskończenie krótkie odcinki czasu, w których obiekt przebywa odpowiednie odcinki drogi

Dzisiejsze rozwiązania[edytuj | edytuj kod]

  • W matematyczny sposób można łatwo udowodnić, że w tym przypadku suma nieskończonej liczby odcinków daje odcinek o skończonej długości, a więc czas potrzebny do pokonania go również jest skończony.
  • Paradoks dotyczący Achillesa i żółwia można rozwiązać za pomocą wykresu pokazującego stosunek drogi do czasu i punkt, w którym Achilles zrówna się z żółwiem.

Pozostałe paradoksy Zenona[edytuj | edytuj kod]

1. Miara. Jeśli wielość istnieje, musi być jednocześnie nieskończenie mała i nieskończenie duża. Wielość z definicji musi być podzielna, podzielna zaś jest, dopóki jej części posiadają wielkość. Jeżeli jest nieskończenie podzielna, to składa się z nieskończenie wielu części. Jeżeli części te nie mają wielkości, to również całość, złożona z części pozbawionych wielkości, musiałaby być pozbawiona wielkości. Jeżeli części mają skończoną wielkość, to całość, jako złożona z nieskończenie wielu części posiadających jakąś wielkość, byłaby nieskończonej wielkości[3].

2. Ilość. Jeśli wielość istnieje, musi być zarówno skończona i nieskończona w ilości. Jeśli rzeczy jest tyle, ile jest, to ich ilość powinna być skończona. Jednak każde dwie rzeczy są oddzielone przez trzecią, a pomiędzy nimi są następne i tak dalej. I tak liczba istniejących rzeczy jest nieograniczona[4].

3. Miejsce. Jeżeli wszystko, co istnieje, zajmuje jakieś miejsce, to również miejsce musi mieć swoje miejsce i tak dalej, w nieskończoność[5].

4. Soryt od gr. σωρός czyli stos: Jaką najmniejszą liczbę ziaren nazwać można stosem (ziaren)?[6]

5. Siew. Skoro przy zasiewaniu pojedynczego ziarna brak jest wrażeń słuchowych, to przy zasiewaniu większej ilości szum musi być złudzeniem[7].

Argumenty przeciwko wielości opierają się na błędnym założeniu (tym samym co argumenty przeciw ruchowi), iż można dzielić w nieskończoność. Błędność "siewu" polega na wyciąganiu wniosku ze zbyt niskiego poziomu szumu przy sianiu małej ilości ziarna.

Przypisy