Implikacja materialna

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj

Implikacja, implikacja materialna (w odróżnieniu od implikacji formalnej, tj. wynikania) – zdanie logiczne lub funkcja zdaniowa powstałe przez połączenie dwóch zdań (poprzednik implikacji) i (następnik implikacji) spójnikiem implikacji

Spójnik implikacji jest spójnikiem ekstensjonalnym – implikacja przyjmuje wartości logiczne zależące jedynie od wartości logicznych łączonych zdań.

Tablica prawdy dla implikacji[1]:
0 0 1
0 1 1
1 0 0
1 1 1

gdzie:

1 – prawda
0 – fałsz.

Definicja[edytuj]

Znak „<” przyjęto nazywać znakiem implikacji, od łac. implico – wplatam, dla zaznaczenia, ze następnik jest niejako wpleciony, uwikłany w poprzednik, skoro w prawdziwej implikacji poprzednik nie może być prawdziwy bez prawdziwości następnika. Samo zaś zdanie postaci „p < q”, czyli zdanie warunkowe, nazywa się częstokroć wprost implikacją. (T. Kotarbiński, Elementy teorii poznania, logiki formalnej i metodologii nauk, Warszawa, PWN, 1986 (1929), s. 140).

Notacja[edytuj]

Zestawienie symboli implikacji, stosowanych przez różnych autorów w początkowym okresie rozwoju logiki formalnej[2][3]:

Schröder, Peirce
Hilbert
Peano
Russell
Łukasiewicz
Implikacja

Współcześnie implikację materialną często oznacza się symbolem [4][5]. Częśc autorów używa symbolu w tym samym znaczeniu[6][7]. Niektórzy natomiast stosują rozróżnienie:

  • oznacza implikację materialną (zdanie jest zdaniem w języku przedmiotowym i może być prawdziwe lub fałszywe);
  • to implikacja logiczna, czyli wynikanie (zapis należy do metajęzyka i oznacza, że jest tautologią)[8][9].

Symbol bywa także używany do oznaczenia w logice modalnej implikacji ścisłej, czyli takiej, w której nie jest możliwe, aby poprzednik był prawdziwy, a następnik fałszywy[10].

Przykłady[edytuj]

Intuicja: implikację można traktować jako obietnicę: „obiecuję, że jeśli dostanę dwójkę z matematyki to zacznę odrabiać zadania”. Jeśli rzeczywiście tak się stanie (poprzednik implikacji będzie prawdziwy), to muszę odrabiać zadania (1⇒1), bo inaczej obietnica zostanie złamana (1⇒0 fałsz!). W każdym innym przypadku implikacja będzie prawdziwa, bo obietnica zostanie spełniona (dostałam piątkę, mogę albo odrabiać zadania albo sobie odpuścić).

  • Zdanie „Jeśli Rzym jest stolicą Włoch, to Warszawa jest stolicą Francji” jest fałszywe, zarówno w interpretacji intuicjonistycznej (bo jedno z drugiego w żaden sposób nie wynika), jak i klasycznej (bo poprzednik jest prawdziwy, zaś następnik fałszywy).
  • Zdanie „Jeśli księżyc jest z sera, to Warszawa jest stolicą Francji” jest w interpretacji intuicjonistycznej fałszywe (bo jedno z drugim nie ma żadnego związku), natomiast w interpretacji klasycznej prawdziwe, bo poprzednik jest fałszywy, więc wynika z niego wszystko.
  • Zdanie „Jeśli n jest podzielne przez 4, to jest podzielne przez 2" jest prawdziwe w obu interpretacjach dla dowolnego n.

Własności[edytuj]

Implikacja spełnia poniższą równoważność:

która nazywana jest zasadą kontrapozycji. Zasada ta jest podstawą dowodu nie wprost.

Implikacja w informatyce[edytuj]

W językach programowania takich jak Java albo C++ nie ma prostego operatora implikacji. Można ją jednak uzyskać w następujący sposób:

Zobacz też[edytuj]



Przypisy

Bibliografia[edytuj]

  1. Ethan D. Bloch: Proofs and fundamentals: a first course in abstract mathematics. Wyd. 2. New York; Dordrecht; Heidelberg; London: Springer, © 2011. ISBN 978-1-4419-7126-5.
  2. Andrzej Grzegorczyk: An outline of mathematical logic. Olgierd Wojtasiewicz, Wacław Zawadowski (tłum.). Dordrecht, Holland; Boston, USA; Warszawa, Poland: D. Reidel Publishing Company; PWN – Polish Scientific Publishers, 1974. ISBN 978-90-277-0447-4.
  3. Mała encyklopedia logiki. Witold Marciszewski (red.). Wrocław; Warszawa; Kraków: Zakład Narodowy im. Ossolińskich, 1970. OCLC 12762285.
  4. Andrzej Mostowski: Logika matematyczna: kurs uniwersytecki. Warszawa: 1948, seria: Monografie matematyczne t. 18. OCLC 250092935.
  5. Helena Rasiowa: Wstęp do matematyki współczesnej. Wyd. 5. Warszawa: Państwowe Wydawnictwo Naukowe, 1975, seria: Biblioteka matematyczna, t. 30. OCLC 749626864.
  6. Kenneth A. Ross, Charles R.B. Wright: Matematyka dyskretna. E. Sepko-Guzicka (tłum.), W. Guzicki (tłum.), P. Zakrzewski (tłum.). Warszawa: Wydawnictwo Naukowe PWN, 1996. ISBN 83-01-12129-7.
  7. Jerzy Słupecki, Katarzyna Hałkowska, Krystyna Piróg-Rzepecka: Logika matematyczna. Wyd. 2. popr. i uzup. Warszawa: Wydawnictwo Naukowe PWN, 1999. ISBN 83-01-12958-1.