Miara regularna

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj

Miara regularnamiara określona na przestrzeni topologicznej dla której każdy zbiór mierzalny jest „niemal otwarty” i „niemal domknięty”.

Definicja[edytuj]

Niech będzie przestrzenią topologiczną, zaś oznacza σ-algebrę określoną na która zawiera topologię (tak więc w ten sposób wszystkie zbiory otwarte i domkniętemierzalne, czyli dana σ-algebra jest co najmniej tak bogata jak σ-algebra borelowska). Niech będzie miarą na Podzbiór mierzalny przestrzeni jest -regularny, jeśli

oraz

Równoważnie jest zbiorem -regularnym wtedy i tylko wtedy, gdy dla każdego istnieją zbiory domknięty i otwarty takie, że

przy czym

Jeżeli każdy zbiór mierzalny jest regularny, to miarę nazywa się regularną.

Niektórzy autorzy wymagają, by zbiór był zwarty (a nie tylko domknięty)[1].

Przykłady[edytuj]

oraz dla jakiegokolwiek innego zbioru

Przypisy

  1. Dudley 1989, rozdział 7.1

Bibliografia[edytuj]

  • Patrick Billingsley: Convergence of Probability Measures. New York: John Wiley & Sons, Inc., 1999. ISBN 0-471-19745-9.
  • Kalyanapuram R. Parthasarathy: Probability measures on metric spaces. AMS Chelsea Publishing, Providence, RI, 2005. MR2169627. ISBN 0-8218-3889-X. (zob. rozdział 2)
  • Richard M. Dudley: Real Analysis and Probability. Chapman & Hall, 1989.

Zobacz też[edytuj]