Papirus Rhinda

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania
Papirus Rhinda
Ilustracja
Papirus Rhinda, część pierwsza (BM 10057)
Data powstania

Drugi okres przejściowy
ok. 1550 roku p.n.e.

Miejsce powstania

Egipt

Rodzaj

Rękopis papirusowy

Język

staroegipski

Rozmiary


  • Pierwsza część (BM 10057): 295,5 cm x 32 cm
  • Druga część (BM 10058): 199,5 cm x 32 cm
  • Niewielkie fragmenty o różnych rozmiarach
Data odkrycia

połowa XIX w.

Odkrywca

Alexander Henry Rhind

Miejsce przechowywania

Muzeum Brytyjskie (pierwsza i druga część)
Brooklyn Museum (niewielkie fragmenty)

Papirus Rhinda[1] (ang. Rhind papyrus, rzadziej Ahmes papyrus[2] (pol. „papirus Ahmesa”), także Rhind Mathematical Papyrus, RMP[3]) – jeden z najstarszych znanych dokumentów matematycznych, sporządzony w XVII w. p.n.e. przez królewskiego skrybę Ahmesa, zawierający przykłady rozwiązań dla problemów matematycznych z zakresu algebry i geometrii. Jego nazwa pochodzi od nazwiska jego odkrywcy – brytyjskiego egiptologa Alexandra Henry'ego Rhinda (1833–1863), który zakupił go w 1858 roku. Dwie części papirusu przechowywane są w Muzeum Brytyjskim w Londynie, a niewielkie jego fragmenty znajdują się w Brooklyn Museum w Nowym Jorku.

Historia[edytuj | edytuj kod]

Papirus został odkryty w Tebach w połowie XIX w., najprawdopodobniej w komnacie zrujnowanej budowli w pobliżu Ramesseum[3]. Najprawdopodobniej wówczas został podzielony na dwie części[4], by zwiększyć jego wartość rynkową[3]. Podczas dzielenia od rękopisu oddzieliły się niewielkie fragmenty z końca sekcji, która dotyczy upraszczania ułamków, a także z początku sekcji, która ukazuje sprawiedliwy podział jednego, dwóch, sześciu, siedmiu, ośmiu i dziewięciu bochenków chleba między dziesięciu mężczyzn[4].

Dwie części papirusu zostały zakupione w Egipcie w 1858 roku przez brytyjskiego egiptologa Alexandra Henry'ego Rhinda (1833–1863)[5]. Po jego śmierci zostały nabyte w 1865 roku przez Muzeum Brytyjskie w Londynie[3][a].

W 1862 roku amerykański marszand sztuki starożytnej Edwin Smith (1822–1906) zakupił fragmenty papirusu Rhinda oraz papirus z tekstem medycznym (tzw. Papirus Edwina Smitha)[5]. Spadkobiercy Smitha przekazali obydwa obiekty New-York Historical Society[5]. W 1949 roku kolekcję egipską New-York Historical Society zakupiło Brooklyn Museum i odtąd fragmenty papirusu Rhinda znajdują się zbiorach muzeum w Nowym Jorku[5].

Po raz pierwszy tekst papirusu został opublikowany w 1877 rok u przez niemieckiego egiptologa Augusta Eisenlohra (1832–1902), który przedstawił kopię rękopisu, jego transliterację, transkrypcję oraz tłumaczenie na język niemiecki, opatrzone jego komentarzem[6]. W 1923 roku nowe opracowanie wydał brytyjski egiptolog T. Eric Peet (1882–1934), a latach 1927 i 1929 kolejne opracowania wydali matematycy z Uniwersytetu Browna[6].

Opis[edytuj | edytuj kod]

Datowany na Drugi Okres Przejściowy, papirus został napisany w hieratyce przez pisarza Ahmesa[3]. Autor opatrzył go z jednej strony datą: 33 rok panowania Apopiego, przedostatniego króla XV dynastii[3] – ok. 1550 roku p.n.e.[6] Po drugiej stronie rękopisu wspomniany jest 11 rok, jednak bez podania imienia panującego władcy, lecz z odniesieniem do zdobycia miasta Heliopolis[3]. Rękopis stanowi kopię wcześniejszego, obecnie zaginionego lub już nieistniejącego, dokumentu – prawdopodobnie z okresu Średniego Państwa[6].

Dwie główne części przechowywane w Muzeum Brytyjskim różnią się wymiarami[5] – pierwsza część (oznaczona w systemie katalogowym muzeum jako BM10057) ma 295,5 cm długości i 32 cm szerokości a druga część (oznaczona w systemie katalogowym jako BM10058) ma 199,5 cm długości i 32 cm szerokości[3]. Długość brakującej części szacowana jest na ok. 18 cm[5]. Fragmenty w Brooklyn Museum (3 większe i 12 mniejszych) mają niewielkie rozmiary – wymiary największego z nich to 16 x 8,5 cm[4].

Papirus jest prawdopodobnie podręcznikiem do matematyki, który był używany przez skrybów do nauki rozwiązywania określonych problemów poprzez spisywanie konkretnych przykładów[3]. Zawiera 84 problemy matematyczne, wraz z tabelami obliczeniowymi, ukazując działania dzielenia i mnożenia, obliczanie ułamków oraz obliczanie objętości i powierzchni figur geometrycznych[3][b]. Jednym z problemów omówionych w rękopisie jest wyliczanie kąta nachylenia piramid przy pomocy sekedu[7] oraz kwadratura koła[8].

Tytuł rękopisu zapisany jest w kolorze czerwonym, którym zaznaczono również początki poszczególnych sekcji spisanych w kolorze czarnym[9].

Uwagi[edytuj | edytuj kod]

  1. Data podana za stroną Muzeum Brytyjskiego, lecz w literaturze spotkać można także rok 1864, zob. Imhausen 2020 ↓, s. 65.
  2. Imhausen podaje, że papirus zawiera 64 problemy matematyczne oraz tabele – różnica w liczbie problemów związana jest z numeracją zastosowaną przez Eisenlohra, który oznaczył 87 problemów, zaliczając do nich także proste obliczenia i tabelki, zob. Imhausen 2020 ↓, s. 67.

Przypisy[edytuj | edytuj kod]

  1. Encyklopedia PWN ↓.
  2. Encyclopædia Britannica 2008 ↓.
  3. a b c d e f g h i j British Museum Online Collection ↓.
  4. a b c Fragments of Rhind Mathematical Papyrus. [w:] www.brooklynmuseum.org [on-line]. [dostęp 2020-12-10]. (ang.).
  5. a b c d e f Imhausen 2020 ↓, s. 65.
  6. a b c d Imhausen 2020 ↓, s. 66.
  7. Robson i Stedall 2008 ↓, s. 416.
  8. Jahnke 2003 ↓, s. 15.
  9. Imhausen 2020 ↓, s. 67.

Bibliografia[edytuj | edytuj kod]