Algebra

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacja, szukaj
Ten artykuł dotyczy działu matematyki. Zobacz też: hasło dotyczące struktury matematycznej, algebry nad ciałem K.
Dzieło, z którego pochodzi określenie "algebra"
Évariste Galois
(1811-1832)

Algebra – jeden z najstarszych działów matematyki, powstały już w starożytności. Zajmuje się on algebrami ogólnymi i relacjami. Algebra elementarna zajmuje się takimi działaniami jak dodawanie i mnożenie; wprowadza pojęcie zmiennej i wielomianu razem z jego rozkładem na czynniki (faktoryzacją) i znajdowaniem ich pierwiastków, choć algebra jest działem bardziej ogólnym (patrz podział algebry).

Wczesna historia algebry[edytuj]

Wczesne formy algebry zostały opracowane przez Babilończyków i Greków, jednak słowo algebra (arab. الجبر, al-dżabr) oznacza dosłownie „przywrócenie” i pochodzi z książki Al-Maqala fi Hisab-al Jabr wa-al-Muqabilah (O odtwarzaniu i przeciwstawianiu), napisanej w IX wieku przez słynnego perskiego matematyka Muhammada ibn Mūsā al-Khwārizmīego, który był muzułmaninem, urodzonym w Khwarizm w Uzbekistanie. Najprężniej działał pod Al-Ma'moun w Bagdadzie w okresie 813-833 r., a zmarł około 840 r. Książka została przywieziona do Europy i przetłumaczona na łacinę w XII wieku. Następnie otrzymała nazwę „Algebra”. Zakończenie nazwiska matematyka: al-Khwārizmī zostało zmienione na słowo łatwiejsze do wypowiedzenia po łacinie i ostatecznie stało się angielskim słowem – algorytm.

Korzenie algebry sięgają czasów matematyków babilońskich, którzy opracowali zaawansowany system arytmetyczny, pozwalający na wykonywanie obliczeń w sposób algorytmiczny. Babilończycy wynaleźli wzory, przy pomocy których można było rozwiązywać problemy rozwiązywane dziś poprzez równania liniowe czy kwadratowe. Z kolei większość matematyków egipskich tej epoki, podobnie jak matematycy greccy czy chińscy w I tysiącleciu przed narodzeniem Chrystusa, zazwyczaj rozwiązywało takie równania metodami geometrycznymi, takimi jak te opisane w Papirusie Matematycznym Rhinda oraz Elementach Euklidesa. Prace Greków nad geometrią zapisane w Elementach, zapewniły podstawę do generalizacji formuł rozwiązań konkretnych problemów i użycia ich do rozwiązywania tych bardziej ogólnych systemów przedstawiania i rozwiązywania równań, jednak nie zdawano sobie z tego sprawy, aż do rozwinięcia się matematyki w średniowiecznym Islamie.

Przed czasami Platona, grecka matematyka przeszła drastyczną zmianę. Grecy stworzyli algebrę geometryczną, gdzie wyrazy algebraiczne były przedstawiane za pomocą boków obiektów geometrycznych, zazwyczaj prostych, podpisanych literami. Diofantos był greckim matematykiem z Aleksandrii oraz autorem serii ksiąg Arytmetyka, które opisują rozwiązywania równań algebraicznych i doprowadziły do współczesnej postaci równania diofantycznego w teorii liczb.

Wcześniejsze tradycje opisane wyżej miały bezpośredni wpływ na Muḥammada ibn Mūsā al-Khwārizmīego. Napisał on później The Compendious Book on Calculation by Completion and Balancing, która sprawiła, że algebra stała się działem matematyki niezależnym od arytmetyki i geometrii.

Hellenistyczni matematycy Heron i Diofantos, podobnie jak indyjscy tacy jak Brahmagupta kontynuowali tradycje Egiptu i Babilonu, mimo iż Arytmetyka Diofantosa i Brahmagupty Brahmasphutasiddhanta były na znacznie wyższym poziomie. Dla przykładu, pierwsze kompletne rozwiązanie arytmetyczne (zawierające zero i rozwiązania ujemne) równania kwadratowego zostało opisane przez Brahmagupta w jego książce Brahmasphutasiddhanta. Później, Perscy i arabscy matematycy stworzyli znacznie bardziej wyszukane metody algebraiczne. Pomimo iż Diofantus i matematycy babilońscy w dużej mierze używali metod ad hoc do rozwiązywania równań, wkład Al-Khwarizmiego był fundamentalny. Rozwiązywał on równania liniowe i kwadratowe bez użycia symboli algebraicznych, liczb ujemnych czy zera, a więc w konsekwencji wyróżnił kilka typów równań.

Wspomniani już wcześniej grecki matematyk Diofantos oraz al-Khwārizmī uważani są za „ojców algebry”.

Innemu perskiemu matematykowi Omarowi Khayyamowi przypisuje się określenie podstawy geometrii algebraicznej i znalezienie rozwiązania ogólnego równania geometrycznego sześciennego. Jeszcze inny perski matematyk, Sharaf al-Dīn al-Tūsī, znalazł algebraiczne rozwiązania numeryczne do różnych przypadków równań sześciennych. On także rozwinął koncepcję funkcji. 

Indyjscy matematycy Mahavira i Bhaskara II, perski Al-Karaji i chiński Zhu Shijie rozwiązali różne przypadki równań wielomianowych trzeciego, czwartego, piątego i wyższych stopni z wykorzystaniem metod numerycznych. W XIII w. rozwiązanie równania sześciennego przez Fibonacciego było początkiem ożywienia w europejskiej algebrze. Tutaj algebra rozwijała się bardzo szybko.

Późniejsza historia[edytuj]

Praca François Viète'a nad nową algebrą u schyłku XVI wieku była ważnym krokiem w kierunku nowoczesnej algebry. W 1637 Kartezjusz opublikował La Géométrie, wymyślając geometrię analityczną i wprowadził nowoczesną notację algebraiczną. Kolejnym kluczowym wydarzeniem w dalszym rozwoju algebry było ogólne algebraiczne rozwiązanie równań trzeciego i czwartego stopnia, opracowane w XVI wieku. Pomysł wyznacznika został opracowany przez japońskiego matematyka Kowa Sekiego w wieku XVII, co niezależnie kontynuował Gottfried Leibniz 10 lat później w rozwiązywaniu układów równań liniowych z wykorzystaniem macierzy. Gabriel Cramer również przysłużył się pracy nad macierzami i wyznacznikami w XVIII wieku.

Algebra abstrakcyjna powstała w XIX wieku początkowo skupiając się na tym, co jest teraz nazywane teorią Galoisa. Augustus De Morgan wynalazł relacje w algebrze, o których pisał w swoim dziele Syllabus of a Proposed System of Logic. Josiah Willard Gibbs opracował wektory w przestrzeni trójwymiarowej, a Arthur Cayley algebrę macierzy (nieprzemienna algebra).

Przykłady[edytuj]

Wyrażenia algebraiczne:

Przekształcenia wyrażenia algebraicznego:

  • 4d+5a+9d+5a = 13d+10a – redukcja wyrazów podobnych.

Podział[edytuj]

Niektóre działy algebry to:

Zobacz też[edytuj]

Linki zewnętrzne[edytuj]