Graf eulerowski

Z Wikipedii, wolnej encyklopedii
Przejdź do nawigacji Przejdź do wyszukiwania
Niniejszy artykuł jest częścią cyklu teoria grafów.




Najważniejsze pojęcia
graf
drzewo
podgraf
cykl
klika
stopień wierzchołka
stopień grafu
dopełnienie grafu
obwód grafu
pokrycie wierzchołkowe
liczba chromatyczna
indeks chromatyczny
izomorfizm grafów
homeomorfizm grafów


Wybrane klasy grafów
graf pełny
graf spójny
drzewo
graf dwudzielny
graf regularny
graf eulerowski
graf hamiltonowski
graf planarny


Algorytmy grafowe
A*
Bellmana-Forda
Dijkstry
Fleury'ego
Floyda-Warshalla
Johnsona
Kruskala
Prima
przeszukiwanie grafu
wszerz
w głąb
najbliższego sąsiada


Zagadnienia przedstawiane jako problemy grafowe
problem komiwojażera
problem chińskiego listonosza
problem marszrutyzacji
problem kojarzenia małżeństw


Inne zagadnienia
kod Graya
diagram Hassego
kod Prüfera


Graf eulerowski, graf Eulera – rodzaj grafu rozpatrywany w teorii grafów. Graf eulerowski odznacza się tym, że da się w nim skonstruować cykl Eulera, czyli cykl, który przechodzi przez każdą jego krawędź dokładnie raz. Pierwszy raz problem poszukiwania cyklów w grafach został podniesiony przez szwajcarskiego matematyka, Leonharda Eulera w roku 1736, który chciał rozwiązać zagadnienie mostów królewieckich. Aby odszukać cykl Eulera w grafie można posłużyć się algorytmem Fleury'ego.

Rozważania Eulera[edytuj | edytuj kod]

Zagadnienie rozważane przez Eulera można przedstawić w następujący sposób:

Jeżeli mamy określony graf, to czy możliwe jest skonstruowanie ścieżki, która pozwala na przejście każdej krawędzi grafu tylko raz?

Euler stwierdził, że aby możliwe było zbudowanie takiej ścieżki, liczba wierzchołków nieparzystego stopnia musi wynosić 0 lub 2.

Graf nieskierowany[edytuj | edytuj kod]

Multigraf półeulerowski

Obecnie grafy, które rozważał Euler nazywane są grafami nieskierowanymi. Liczba krawędzi stykających się z danym wierzchołkiem nazywana jest jego stopniem. Jeżeli wszystkie wierzchołki grafu nieskierowanego mają stopień parzysty, to znaczy, że da się skonstruować zamkniętą ścieżkę Eulera nazywaną cyklem Eulera. Jeżeli najwyżej dwa wierzchołki mają nieparzysty stopień, to możliwe jest zbudowanie tylko takiej ścieżki Eulera, która nie jest zamknięta. Graf zawierający cykl Eulera jest nazywany grafem eulerowskim, a graf posiadający jedynie ścieżkę Eulera nazywany jest półeulerowskim (pseudoeulerowskim). Inna definicja określa nieskierowany graf eulerowski jako graf spójny, dla którego wszystkie wierzchołki są stopnia parzystego.

Graf skierowany[edytuj | edytuj kod]

Graf skierowany różni się tym, od nieskierowanego, że ruch może odbywać się tylko w kierunkach wyznaczonych przez krawędzie. Poruszanie się "pod prąd" jest zabronione. Każdy wierzchołek posiada pewną liczbę krawędzi wejściowych nazywaną stopniem wchodzącym. Analogicznie ilość krawędzi wychodzących to stopień wychodzący. Graf skierowany posiada drogę Eulera, gdy wszystkie wierzchołki z wyjątkiem dwóch mają takie same stopnie wychodzące i wchodzące, w jednym z tych dwóch wierzchołków stopień wychodzący jest o 1 większy niż wchodzący a w drugim odwrotnie. Inaczej skierowany graf eulerowski definiowany jest jako graf silnie spójny, w którym dla każdego wierzchołka grafu liczba krawędzi wchodzących jest równa ilości krawędzi wychodzących.

Zobacz też[edytuj | edytuj kod]

Bibliografia[edytuj | edytuj kod]

  • Euler, L., "Solutio problematis ad geometriam situs pertinentis", Comment. Academiae Sci. I. Petropolitanae 8 (1736), 128-140.
  • Hierholzer, C., "Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechnung zu umfahren", Mathematische Annalen 6 (1873), 30-32.
  • Lucas, E., Récréations Mathématiques IV, Paris, 1921.
  • Ross, K., Wright, C., "Matematyka dyskretna", Warszawa, 1996.

Linki zewnętrzne[edytuj | edytuj kod]