Teoria grafów

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacji, wyszukiwania
Niniejszy artykuł jest częścią cyklu teoria grafów.




Najważniejsze pojęcia
graf
drzewo
podgraf
cykl
klika
stopień wierzchołka
stopień grafu
dopełnienie grafu
obwód grafu
pokrycie wierzchołkowe
liczba chromatyczna
indeks chromatyczny
izomorfizm grafów
homeomorfizm grafów


Wybrane klasy grafów
graf pełny
graf spójny
drzewo
graf dwudzielny
graf regularny
graf eulerowski
graf hamiltonowski
graf planarny


Algorytmy grafowe
A*
Bellmana-Forda
Dijkstry
Fleury'ego
Floyda-Warshalla
Johnsona
Kruskala
Prima
przeszukiwanie grafu
wszerz
w głąb
najbliższego sąsiada


Zagadnienia przedstawiane jako problemy grafowe
problem komiwojażera
problem chińskiego listonosza
problem marszrutyzacji
problem kojarzenia małżeństw


Inne zagadnienia
kod Graya
diagram Hassego
kod Prüfera


Teoria grafów to dział matematyki i informatyki zajmujący się badaniem własności grafów. Informatyka rozwija także algorytmy wyznaczające pewne właściwości grafów. Algorytmy te stosuje się do rozwiązywania wielu zadań praktycznych, często w dziedzinach na pozór nie związanych z grafami.

Opis zagadnienia mostów królewieckich opublikowany w 1736 roku przez Leonharda Eulera jest uznawany za pierwszą pracę na temat teorii grafów.

Zagadnienia teorii grafów[edytuj | edytuj kod]

Ważne algorytmy[edytuj | edytuj kod]

Zobacz też[edytuj | edytuj kod]