Konstrukcje klasyczne

Z Wikipedii, wolnej encyklopedii
Skocz do: nawigacji, wyszukiwania
Cyrkiel i linijka (PL).png

Konstrukcje klasyczne, konstrukcje przy użyciu cyrkla i linijki – wspólna nazwa problemów polegających na wyznaczeniu odcinków lub kątów spełniających dane warunki jedynie przy pomocy cyrkla i linijki bez podziałki.

Zasady konstrukcji[edytuj | edytuj kod]

Możliwe operacje przy konstrukcjach klasycznych

Obydwa narzędzia są wyidealizowane – cyrkiel może być rozwarty na dowolną szerokość, a linijka jest jednostronna (tj. nie wolno korzystać z drugiej krawędzi) i ma potencjalnie nieskończoną długość. Jedyne dozwolone wykorzystanie cyrkla to kreślenie okręgów o środkach w punktach, które już są dane i promieniach równych odcinkom wyznaczonym przez dane lub już skonstruowane punkty; jedyne dozwolone wykorzystanie linijki to rysowanie (lub przedłużanie) odcinków wyznaczonych przez dane lub już skonstruowane punkty. Poza tym mając dane:

  • dwie proste
  • prostą i okrąg
  • dwa okręgi

można znaleźć ich punkty wspólne lub stwierdzić że ich nie ma. Inne czynności są niedozwolone.

Słynne problemy starożytności[edytuj | edytuj kod]

Kwadratura koła

Trzy słynne problemy starożytnej matematyki greckiej: trysekcja kąta (podział danego kąta na trzy równe części), podwojenie sześcianu (wyznaczenie boku sześcianu o objętości dwa razy większej niż sześcian dany) i kwadratura koła (konstrukcja kwadratu o polu równym polu danego koła) nie mogą być rozwiązane przy pomocy cyrkla i linijki, ale dowód tego podany został dopiero w roku 1837 przez Pierre Wantzela i jest wnioskiem z twierdzenia noszącego dziś jego imię. Konstrukcje te mogą być jednak rozwiązane w przybliżeniu z dowolną założoną dokładnością.

Konstrukcje samą linijką[edytuj | edytuj kod]

Jeśli dana konstrukcja jest wykonalna za pomocą cyrkla i linijki, to jest ona wykonalna za pomocą samej linijki, o ile dany jest na płaszczyźnie pewien okrąg wraz ze środkiem (twierdzenie Ponceleta-Steinera).

Konstrukcje samym cyrklem[edytuj | edytuj kod]

Jeżeli dana konstrukcja geometryczna jest wykonalna za pomocą cyrkla i linijki, to jest wykonalna za pomocą samego cyrkla, pod warunkiem, że ograniczymy się do wyznaczania punktów konstrukcji, a pominiemy rysowanie linii (twierdzenie Mohra-Mascheroniego).

Zobacz też[edytuj | edytuj kod]