Przejdź do zawartości

Przestrzeń nieprzywiedlna

Z Wikipedii, wolnej encyklopedii

Przestrzeń nieprzywiedlna – niepusta przestrzeń topologiczna w której każda para niepustych zbiorów otwartych ma niepustą część wspólną[1].

Własności

[edytuj | edytuj kod]
  • Przestrzeń topologiczna jest nieprzywiedlna wtedy i tylko wtedy, gdy każdy jej niepusty zbiór otwarty jest w niej gęsty.
  • Przestrzeń topologiczna jest nieprzywiedlna wtedy i tylko wtedy, gdy dowolny jego zbiór otwarty jest spójny.
  • Jeśli przestrzeń X jest nieprzywiedlną podprzestrzenią przestrzeni Y, to domknięcie X w Y jest nieprzywiedlne.
  • Jeśli X jest przestrzenią nieprzywiedlną, to dowolny jej otwarty podzbiór jest także nieprzywiedlny.
  • Jeśli przestrzeń X ma pokrycie otwartymi zbiorami nieprzywiedlnymi, takie że dowolne dwa takie zbiory mają przecięcie niepuste, to przestrzeń X jest nieprzywiedlna.
  • Dowolna nieprzywiedlna podprzestrzeń przestrzeni X jest zawarta w pewnej maksymalnej podprzestrzeni nieprzywiedlnej. Maksymalna nieprzywiedlna podprzestrzeń nazywana jest nieprzywiedlną składową przestrzeni X i jest jej podzbiorem domkniętym. Przestrzeń X jest sumą swoich składowych nieprzywiedlnych.

Przykłady

[edytuj | edytuj kod]

Przypisy

[edytuj | edytuj kod]
  1. M.F. Atiyah, I.G. Macdonald: Introduction to commutative algebra. Addison-Wesley Publishing Company, 1969.

Bibliografia

[edytuj | edytuj kod]
  • N. Bourbaki: Algebra przemienna (tłum. ros.). Wyd. 1. Mir, 1971.
  • M.F. Atiyah, I.G. Macdonald: Wstęp do algebry przemiennej (tłum. ros.). Wyd. 1. Mir, 1972.